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We show how to solve time-harmonic scattering problems by means of a high-
order Nystom discretization of the boundary integral equations of wave scattering
in 2D and 3D. The novel aspect of our new method is its use of local corrections to
the discretized kernel in the vicinity of the kernel singularity. Enhanced by local cor-
rections, the new algorithm has the simplicity and speed advantages of the traditional
Nystrdm method, but also enjoys the advantages of high-order convergence for con-
trolling solution error. We explain the practical details of implementing a scattering
code based on a high-order Nymtr'discretization and demonstrate by numerical
example that a scattering code based on this algorithm can achieve high-order con-
vergence to the correct answer. We also demonstrate its performance advantages over
a high-order Galerkin code. @ 1998 Academic Press
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I. INTRODUCTION

High-order methods are numerical methods characterized by their ability to obtain
digits of precision with comparatively small additional effort. Scattering codes that emj
high-order methods have a distinct advantage over scattering codes that use low-order
ods when it comes to computing results accurately. We demonstrated this advantag
a Galerkin method of moments scattering code called Fast&¢as 2], which employs

1 This research was supported by the Defense Advanced Research Projects Agency of the U.S. Departi
Defense under Contract MDA972-95-C-0021 and by the Hughes Electronics Corporation.
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high-order methods in its geometry description, current basis functions, and quadrature
terms of memory efficiency, the advantage of using a high-order code such as FastScal
clear. For a given number of unknowns, results obtained with FastScat were generally n
accurate than those obtainable by low-order codes, with the accuracy gap widening ray
as the number of unknowns applied to the problem was increased. In terms of CPU time
ciency, however, the advantage of using a high-order code such as FastScat was not so
The precomputation phase of the calculation often accounted for an undesirably large f
tion of the total solution time. Although we were able to significantly accelerate the part of 1
precomputation phase devoted to computing near-interaction matrix elements by using
order regulated kernels [3], the overall matrix fill procedure was still considered too slo

The precomputation phase of a Galerkin scattering calculation is time consuming bece
itrequires numerical evaluation of the convolution of the kernel with basis functions on eve
pair of source and field patches. This amount®Nfonumerical double integrations over
patches, wherdl is the number of unknowns. By contrast, when a point-based (dtytr”
discretization is used, the impedance matrix fill step consists of nothing more than a ke
evaluationto fill most matrix elements an@(N) single integrations and some low-rank
linear algebra to fill the others (specifically, the near interactions). As a result, use c
point-based discretization dramatically reduces precomputation time.

Despite its simplicity and speed advantages, the Nystniethod has not been widely
used for discretizing the integral equations that arise in 2D and 3D scattering proble
In fact, we know of only a few reported instances, of which [4, 5] are examples. Tl
problem is that the conventional Nysin'method [6] is designed to handle regular kernels
whereas the Helmholtz kernel for wave scattering is singular wherever the source p
coincides with the field point. The standard way [6] to try to overcome this problem is
use so-called “singularity extraction,” which, in practice, removes the infinity in the kern
but not the singularities in the kernel’s derivatives. While singularity extraction avoids t
dilemma caused by numerical evaluation of the kernel at infinities, it does not genera
easily to arbitrary surface patch geometries and it is a low-order method. In this paper,
introduce “local corrections” as a means to overcome the problems associated with ke
singularities. This enhanced Nystn“discretization method has all the advantages of th
standard Nystth method combined with the high-order convergence capability requir
to achieve error control.

This paper provides a detailed explanation for using the Ngstriethod to solve scat-
tering problems in the 2D and 3D scalar cases and the 3D vector case (by which we n
electromagnetic scattering based on the Maxwell equations), as well as numerical evide
demonstrating the method’s utility. The first section reviews the traditional diystréthod
for discretizing integral equations and explains how it can be adapted to handle sing
kernels by incorporating local corrections. The second section discusses practical aspe:
implementing a high-order Nystnii code, such as appropriate surface models and mesh
choice of testing functions for computing local corrections, and how to compute scatter
results. In the fourth section, we show numerical results for some 2D and 3D canon
scatterers to demonstrate that our implementation of the diysitnéthod achieves high-
order convergence to the correct answer. We also demonstrate the run-time perform
benefits of a using high-order Nystm'code, compared to high- and low-order Galerkir
codes, in this section. Finally, the Appendix describes how the local correction integrals
2D scalar, 3D scalar, and 3D electromagnetic scattering can be formulated for efficient
accurate numerical evaluation.
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Il. NYSTR OM METHOD

A. Conventional Nystrm Method

The conventional Nystrin method is a simple and efficient mechanism for discretizatic
of integral equations with nonsingular kernels. Consider the integral equation

(X =/SdS’G(X—X/)¢(X/) )

and a quadrature rule for integrating a functib¢x) over the regiors

. N
ds f =~ n f(Xn). 2
/Ss(x> ;w (X0 )

Such a quadrature rule will be provided by Gauss—Legendre or Gauss—Jacobi rules
parameterization db, so that the weights, will be the products of the elementary weights
wp With the Jacobian of the parameterization:

on = v/9(Un)wn, 3

Xn = X(Up), 4)

whereu, are the abscissae of the elementary rul@y) is the mapping function of the
surfaceS, andg(u) is the determinant of the mapping metric. The extension to patch
parameterizations is straightforward.

The Nystom discretization of a function o8is simply the tabulation of the function at
the quadrature points,:

Wn = w (Xn) . (5)

To discretize integral Eq. (1), we simply form a matrix from the kernel:

N
¢m = Z nG(Xm — Xn)¥n. (6)
n=1

This discretization has an error of the same order as the underlying quadrature rule
In other words, if the surfac8& is smooth,¢ and G(x — x’) are regular functions, and if
a high-order quadrature rule is used, then the solution to Eq. (6) represents a high-
approximation to the exact solution.

Unfortunately, the kernel&(x — x") for wave scattering are not regular. Instead, the
have singularities (or even hypersingularities) at short distances. With such kernels
often not even possible to make a matrix out of the kernel because its value is unde
whenx = x'. Even if the kernel were finite at vanishing separation, a kernel singular in
higher derivatives would spoil the high-order properties of the above prescription.

B. High-Order Nystbm Method for Singular Kernels

We have adapted the Nystn'method to handle singular kernels, without sacrificing hig|
order convergence, by incorporating Strain’s method [8] for obtaining high-order quadra
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rules for singular functions. The essence of the method is that by computing convoluti
of the kernel with a suitable set of testing functions, it is possible to determine how to ad;
the quadrature rule so thatitis just as accurate near the singularity as far fromit. The be
of the method is that these quadrature rule modifications are required only in the vicir
of the singularity, hence the nartexal corrections

Conceptually, local corrections may be viewed as adjustments to the quadrature wei
(atthe original set of sample points) that are required to make the quadrature rule high-o
accurate when the (singular) functi®@(x — x’) is included in the integrand. In practice,
since quadrature weights and discretized kernel terms always enter into the quadrature
as product pairs, one can equally well “locally correct” the discretized representation
kernel and keep the original quadrature weights. This is the preferred approach becaus
modified representation of the kernel has no infinities. We can write the “corrected” mat
representation of the kernel as

()

& { L mn, whenxp, € D,
M™M= G(Xm — Xn), Otherwise
whereL nnis a (sparse) matrix of local corrections whose entries are nonzero only for sou
pointsx, within a small domairD,, centered on the field poimt,. For|x, — X| sufficiently
large (i.e., outside the local correction domddy,), G(Xm — X') is a smoothly varying
function of position and the underlying quadrature rule provides a high-order approximat
to the desired integral. Close to the singularity, on the other hand, the singular natur
the kernel spoils the high-order behavior of the underlying quadrature rule, and it becor
necessary to use locally corrected values for the kernel inste@daf — x,) in order to
achieve high-order convergence. The mechanism for computing the local corrections
a given set of source points is explained below. The size of the local correction domai
discussed in Section III.D.
The underlying quadrature rule is exact for integration of a certain class of functio
(typically polynomials). We choose the local corrections to make convolution of the singu
kernel with the same class of functions exact. They are obtained by solving the linear sys

Z @n I—mnf(k)(xm —Xp) = ds'G(xm — X)) f(k)(xm - X)), 8
n

Dm

which represent& constraints (one for each testing functiéf) on J local correction
coefficients (one for each of source points in the vicinity of theth field point). The
integral overDy, can be obtained by oversampling the region of integration until the rest
has converged to the desired accuracy. The nonzero componentsrahtiev of the local
correction matrix are obtained by inverting the (small) system of equations above, eithe
factorization (via LU decomposition) if = K or by singular value decomposition (SVD) if
J # K. Computing local corrections is the most time consuming step of the precomputat
phase. Fortunately, it needs to be done only once at every sample point.

C. High-Order Nystdm Method Advantages

There are several reasons for using the Nystriethod to achieve a high-order dis-
cretization:
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e Faster precomputatianUnlike the Galerkin method, which requiré’ numerical
double integrations to fill the impedance matrix, the Ngstriethod requires less thi?
kernel evaluations an@(N) calculations of local correction coefficients (each of whicl
involves a small number of adaptive integrations and a low-rank matrix inversion). An ac
tional acceleration is possible when multiple solutions are desired at different frequen
This comes about because a frequency-dependent Helmholtz kernel can be written «
product of a smoothly varying, frequency-dependent function and a frequency-indeper
Laplace kernel. Once the local corrections for the Laplace kernel have been computed
can be used with minor modification at any frequency.

o Elimination of multipatchparametric basis function€onventional method of mo-
ments scattering codes require basis functions with a certain level of continuity (in
surface parameterization) across patch boundaries to facilitate differentiation. For exar
an important property of the popular RWG [9] basis functions for electromagnetic s
tering is that their normal components are continuous across patch boundaries. On
also use high-order extensions to the RWG basis functions [10], although we have fc
that implementing these basis functions in a scattering code can be both complicatec
inconvenient, especially for arbitrary, curved surfaces. Fortunately, for high-order cc
the requirement to use elemental sources with guaranteed continuity between patche
appears because continuity of the source distribution is achieved as a natural conseq
of accurately solving the integral equation. (The reason this is so has to do with the
that the error caused by not enforcing continuity of the elemental sources is compal
to the error of the underlying discretization. With a low-order discretization (e.g., RV
basis functions on flat patches), continuity enforcement has a significant payoff bec
the error in the underlying discretization is also significant. With a high-order discreti
tion, where the error due to the underlying discretization can more easily be made
significant, the situation is reversed. Thus, for high-order codes, whether Galerkir
Nystrém, the benefits of enforcing source continuity between patches do not outweigt
inconveniences.)

e More amenable to fast solution algorithmisnplementation of a fast method that
requires segregation of the discretized scatterer into groups (such as the fast mul
method (FMM) [11] or adaptive integral method (AIM) [12]) is simpler and more natur
with a point-based discretization. When a Galerkin implementation with overlapping b
function domains is employed, the fast algorithm is either more complicated (because n
patch basis functions must be split apart) or less efficient (because the groups are la
A Galerkin implementation that uses high-order basis functions (even those confine
single patches) cannot achieve optimum efficiency from the FMM because high-order |
functions are used to their greatest advantage on patches larger than a wavelength, w
optimum use of the FMM favors groups smaller than a wavelength. In adigstisScretiza-
tion, the groups consist of individual sample points on the surface, so no such grou
restrictions apply.

o lterative solver memory reductiowith the Nystom method, the memory requirement
for an iterative solver using the full impedance matrix can be reduced@aN?) (storing
the full impedance matrix) t&®(N) (storing only the sparse local correction matrix). Thi:
is practical because reconstruction of the unsaved portions of the impedance matrix
requires evaluations of the kernel, which are fast. If the FMM is used to represent the
interactions, the storage requirement goes fl@MN>4) in the single-stage case [13] to
O(Nlog(N)) in the multilevel case [14].
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e Symmetry exploitationVhen basis functions are used, it is more complicated to re
flect geometrical symmetries in the matrix representation. It may be necessary to explic
consider basis function transformation properties and to provide special treatment for s
variables (e.g., the coefficients of basis functions whose domains intersect reflection plar
In the Nystom case, the representation of symmetries is much simpler.

Ill. PRACTICAL CONSIDERATIONS

A. Surface Description

Without a high-order surface description, a high-order Nystdiscretization is of little
benefit. For example, representing a curved surface by means of flat facets limits the ra
solution convergence to low order whether or not the rest of the discretization method is t
order. Ideally, the internal representation of the surface exactly matches the physical sur
Such arepresentation is possible for idealized curved shapes such as circles, ellipses, 0
etc. in 2D, and spheres, ellipsoids, etc. in 3D. For curved objects of more practical inter
a high-order description of the physical surface may be given by high-order parame
representations such as bicubic splines or NURBS (nonuniform rational B-splines).
these are often the representations used by a CAD program to describe the object as
being designed and built, it is appropriate that we should also use them for electromagr
or acoustic modelling purposes.

Use of a high-order surface description is distinguished from that of a faceted descript
in that the subdivision of the surface into patches is typically done once and refining
discretization to improve accuracy is accomplished by increasing the order of the quadra
rule (which increases the number of sample points per patch).

B. Meshing

The essence of a point-based discretization is the tabulation of functions at a set of pc
lying on the surface. This need not have anything to do with subdividing a surface i
patches. Indeed, in the 2D case, patches can be done away with entirely on closed sur
(i.e., closed curves) parameterized by arc length, because the trapezoidal rule is a |
order quadrature rule for periodic functions. In 3D, however, global parameterizations w
natural, high-order quadrature rules are much harder to come by, so subdivision of a sut
into patches, each of which comes with its own high-order quadrature rule, become
practical necessity.

Since patches are introduced solely for the purpose of providing ready-made, high-ol
quadrature rules on the surface, the job of meshing a surface is simpler and less restric
Specifically, whereas a mesh designed for use with RWG-type basis functions is not allo
to have a vertex in the middle of an edge, there is no such restriction on a mesh desi
for a point-based discretization. The only practical restrictions are that the mesh cover
surface and that the patches not be so distorted or curved that the supposedly high-
quadrature rules are not actually high order.

C. Testing Functions

The choice of testing functions goes together with the choice of quadrature rule. If
quadrature rule is designed to efficiently integrate regular functions, the testing functi
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should be regular functions of increasing order. In locations where singular behavior o
source function is expected, such as near geometric singularities (e.g., edges and col
it may be desirable to apply a different quadrature rule and use appropriately sing
testing functions [15]. For purposes of this discussion, we will assume the scattering su
and the sources are smooth functions of position. Any departures from regularity ca
accommodated reasonably efficiently by tapering the size of the patches in the directi
the singularity.

Testing functions may be global or local. Examples of global testing functions are mc
mials in the surface parametein the 2D case, and powersxfy, andzinthe 3D case. The
advantage of using global testing functions to compute local corrections on smooth surf
is that such testing functions are manifestly continuous across patch boundaries, jus
the sources. Sometimes enforcing continuity is a mistake, however, such as when the
point and source patch are near each other but on separate, unconnected surfaces.
testing functions can also perform badly near geometric singularities such as a right-¢
bend. Local testing functions (i.e., testing functions confined to individual patches) do
take full advantage of the guaranteed continuity of the sources on touching patches b
the preferred choice because they are simpler to implement and more robust.

With local testing functions, the local corrections for a given field point can be compu
on a patch by patch basis. Thus, the number of points whose quadrature weights are
corrected always equals the number of sample points on the patch. Doing this has the
benefit of keeping down the size of the local correction linear systems that must be sc
when it becomes necessary to compute local corrections for points on several patche

The number of local testing functions to use is still a free parameter. In 2D, where us
a Gauss—Legendre rule of orddrallows exact integration of polynomials up to ordéu 2
(i.e., degree BI — 1), it makes sense to use as many testing functions as there are poir
locally correct. In effect, the singular kernel and the unknown source function are both b
approximated to orde, which means the order of approximation for the productvk 2
This results in an exactly determined system of equations for computing local correcti

In 3D, if a Gauss—Legendre product rule of ortisrM, is used on quadrilateral patches
the natural number of local testing functions to use 4, #,. This leads to an exactly
determined system. If the patches are triangles, one can use the quadrature rules of L
and Jespersen [16] and their higher-order extensions. For these triangle rules, a n
correspondence between the number of sample points and the maximum testing fur
degree is less obvious. When the number of sample points and the number of te
functions are notthe same, they can atleast be made close, in which case the nonsquar:
system of equations for the local corrections can be solved by computing a pseudoin
using SVD. In our experience, local correction systems that are square or nearly sc
perform best.

C.1. Two-dimensional scalar testing functionddonomials of increasing degree in the
parameterization, i.ef ® (u) = uk, are the simplest testing functions, but they can also |
troublesome when using high-order rules because they produce linear systems for comy
local corrections whose condition number grows exponentially with degree. The alterne
we favor is orthogonal polynomials such as Legendre or Lagrange polynomials. With ei
of these polynomials as testing functions, it takes a little longer to compute the integre
the right-hand side of Eq. (8), but the linear system is well conditioned for all polynorr
degrees. In addition, if the number of testing functiofsequals the number of source
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points whose quadrature weights are being corredtaben the system is orthogonal and
the matrix consisting of th& testing functions evaluated at tledifferent source points
can be inverted simply by transposition.

C.2. Three-dimensional scalar testing function¥he trade-off between the simplicity
of monomials and the better conditioning behavior associated with orthogonal polynom
exists also in the 3D cases. In 3D, however, our experience have been confined to te
functions of a low enough degree that use of monomial functions generally does not p
any serious trouble. On triangular patches, we use testing functions of the form

O ) = (uhHMuAH", ©

whereu! andu? are the parameters of the surface description and the exponents o
0<m,n< M and 0<m+ n < M for some maximum testing function degrigke

C.3. Three-dimensional vector testing functionk this case, vector testing functions
locally tangent to the surface are required; continuity of the testing functions betwe
adjacent patches is not. A natural set of basis vectors is given by the derivatives of
surface with respect to the two surface paramaiémmsndu?. We use testing functions of
the form

apX(u)

tf}k)(u) = ﬁ O, (10)

wherev = 1, 2 and the scalar functions® (u) are the same as those used in the 3D scal
case. This form for the testing functions has the property that the surface divergenc
tl is

vt = 8”—% A(VERW) = av_% : <Zgaﬁ3a £ () 3/3X> (11)
af

sinced, x(u)/+/g(u) is divergenceless (see Appendix C). This form for the divergence
t®(u) (which enters into the computation of local corrections for the hypersingular kern
has the especially desirable property that it avoids the need to compute second or hi
order derivatives of the surface.

D. Extent of Local Correction Domain

When local testing functions are used, the region over which local corrections shoulc
computed always includes the patch containing the field point, and it extends out to incl
other patches until the underlying quadrature rule is accurate enough to replicate the e
answer to within a desired tolerance. Since the testing functions have local support,
problem of computing local corrections for a region containing several patches decou
naturally into several smaller local correction problems, one for each patch. The tolera
should be based on an estimate of the optimum accuracy that the particular discretize
could achieve; there is, after all, little to be gained by trying to evaluate the impedar
matrix more accurately than what is warranted by the discretization. The integrals on
right-hand side of Eq. (8) can be computed by adaptive integration to comparable accur
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E. Local Corrections for “Regular” Parts of the Kernel

In principle, it is unnecessary to compute local corrections for regular component
the kernel because they will be efficiently integrated by a quadrature rule of sufficie
high order. If such components are strongly peaked, however, the required order me
so high that it is computationally more efficient to treat them as if they were singu
and compute local corrections for them. For example, the scalar k&meélG(x, xX') in
2D or 3D is a strongly peaked function gf when the field poink is close to, but not
on, the source patch. This situation arises in the analysis of scattering from thin layers
example. One way to handle this problemis to put a fine discretization on each layer, in e
subdividing the strongly peaked kernel function into small parts, each of which is relativ
smooth. This procedure is inefficient, however, because it uses many more sample f
than are warranted by the expected spatial structure of the source. A better approach
be to discretize each layer densely enough to adequately represent the sources and cc
local corrections for the strongly peaked kernel. Computing such local corrections ca
a nontrivial task by itself, but one might expect that the extra time spent in precomputa
would be compensated by a less time-consuming solution phase.

F. Using the Results

F.1. Computing scattered fieldsThe amplitude of a scattered wave can be comput
by convolving the scattered wave with the source distribution. Even though aoRyst
discretization specifies the source only at a finite set of points, these points are id
suited for evaluating integrals in a high-order fashion by virtue of Eq. (2). For example,
amplitudeF (k) for 3D scalar scattering of a source distributigx) on a surfaces with
Neumann boundary conditions (i.&.; Vi (x) =0 for x on S) into the plane wave given
by ¢ (x) =€k*is

1 A
Fk) = ym ]i ds(ft - Vo™ (x)) ¥ (x) 12)

1 .
== > wi () - Vé* (X)) ¥ (). (13)

where the sum is over all quadrature points anmdicates complex conjugation. The
extensions to other forms of scattering, whether near- or far-field, are straightforward.

F.2. Source interpolation. When a scattering problem is solved using a Galerkin sc:
tering code, it is obvious how to compute the value of the source distribution at any p
on the surface because the solved-for coefficients multiply basis functions that are unic
defined at every point on the surface. The Nystidiscretization, on the other hand, return
values of the sources only at a finite set of discrete sample points, so that determinin
value of the source distribution at a point that is not part of this set requires interpolati

When the scattering computation is performed using a second kind integral formulat
one can use the original Nystri'interpolation formula, augmented by local corrections,
interpolate the source distribution. As an example, if the magnetic field integral equa
(MFIE) is used to solve for the electric current distributidfx) induced on a perfectly
electrically conducting (PEC) scatterer by an incident magnetic&fix), one can write
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the current at any pointon the surfac& as [17]
J(X) = 2A(X) x {H‘”C(x) — f{ ds V'G(x, X) x J(x/)]. (14)
S

We obtain an interpolation formula from this continuous equation by using Eg. (2)
approximate the integral, i.e.,

J(X) = 2A(X) x lH‘”C(x) — Zwi V'G(X, Xi) x J(Xi )] , (15)

where the sum oveérextends over all sample points 8nOf course, to make this a high-order
interpolation formula, it may be necessary to compute local corrections to the quadra
rule at source points in the vicinity of the field poit

Another interpolating function, which does not require computing new local correctio
and is usable with first or second kind integral formulations, takes the form of a line
combination of the functions that are integrated exactly by the underlying quadrature r
The coefficients may be determined by convolving the source with the projection operz

10GX) = FnOO (N Dmn f(X), (16)

m,n

where the summation extends over all functidp&) for which the quadrature rule is exact,
andN is a normalization matrix whose components are given by

Npun = / ds £n(X) fo(0). (17)
S

If the f;(x)'s are orthonormal ove8, thenN is simply the identity matrix. Convolution
with | (x, X’) eliminates the part of a function that is orthogonal to all the)’s. If we
evaluate the convolution df(x, x") with the source function by means of the underlying
quadrature rule, we arrive at the following source interpolation funcigh which only
requires knowledge of the source at the discrete set of sample points

S0 =Y fmOO(NDmn Y o1 fa(Xi) S(X)). (18)
m,n i
The summation overin the above equation extends over all sample points.

IV. RESULTS

This section is composed of two parts. The objective of the first part is to show that «
most recent version of FastScat, which uses a Nystliscretization, achieves high-order
convergence to the correct answer for a few small, benchmark problems from 2D scalar
3D vector scattering. In the second part, we benchmark the performance of this code ag
two Galerkin codes, comparing them on the basis of CPU time and solution accuracy.
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A. Validation

The most common practice seen in the literature for demonstrating the validity of a s
tering code is to show that the results obtained from the code wisintecular discretization
compare favorably to a reference solution obtained from a series solution, another scatt
code, or measurements. Individual results such as this, while useful and necessary, say
ing about the convergence properties of the algorithm on which the code is based. To
how an algorithm converges, one must compute results with a sequence of increasingl
discretizations and observe whether and how the results converge to the correct answ

This is especially important when validating a (purportedly) high-order code. One car
expect to enjoy the benefits of a high-order code (more accurate solutions, solution
control, etc.) on large scattering problems without first verifying that the code achieves h
order convergence on small scattering problems (where itis easier to generate solution:
very small errors). The order of convergence of a numerical method relates to the ra
which the error in the computed solution decreases as the discretization scale decr
For small enough discretization scaleghe error in the solution computed bypgh-order
method scales asP. The results presented in this section will be shown to follow th
scaling law.

The benchmark problems include a circle and an ellipse in 2D, and a sphere an
ellipsoid in 3D. In the 2D scalar scattering cases, results for both Dirichlet and Neum
boundary conditions on the surface will be presented; in the 3D vector (electromagn
scattering cases, it will be assumed that the surfaces are perfect conductors. The s
boundary conditions are chosen mainly for simplicity; similar convergence behavior
been shown for other types of boundary conditions (such as impedance boundary cond
and dielectric interfaces) as well.

A.1. Two-dimensional scalarWe solved four different integral equations to obtain 2L
scalar scattering results. For Dirichlet boundary conditions (which correspond to the
polarization case of electromagnetic scattering from an object with cylindrical symme
the first-kind integral equation is

P (x) = —7{ dl' G(x, X) o (X)), (19)
C
and the second-kind equation is
—A - V¢"(x) = %U(X) + j'{ dl'(f" - V/G(x, X)) o (X)). (20)
C

In these equationg™™(x) is the incident scalar field3(x, x') is the 2D scalar kernel, and
fi andf’ are the unit normals to the conto@rat the field and source points, respectively
For this polarization case, the 2D scalar sourcis proportional to the z component of
the electric currend in the corresponding 3D vector problem, assunirig the axis of
translational symmetry.

For Neumann boundary conditions (which correspond to the TE polarization cas
electromagnetic scattering) the first-kind integral equation is

A - Voo(x) = % dl’(A - V)R - V/G(X, X)) ¥ (X) (21)
C



638 CANINO ET AL.
and the second-kind equation is

i 1
P"X) = SV - ji dlI'(f"- V'G(x, X)) ¢ (X). (22)

For this polarization case, the electric currérib the corresponding 3D vector problem,
assuming is the axis of translational symmetry, is related to the 2D scalar squine

J=vyhx2 (23)

A combined field equation can be obtained in either case by adding the first and sec
kind equations together using an appropriate combination coefficient [18]. Although
combined field equation results are reported here, it should be noted that use of a comt
field formulation is often recommended because, by being insensitive to internal resonar
it can improve the condition number of the impedance matrix.

A.l.a. 1i-radius circle A circle is the ideal problem for benchmarking a high-ordel
scattering code because its surface is smooth and easy to define exactly, and its
section can be determined, for purposes of comparison, to arbitrary accuracy using the
series [19]. We used FastScat to compute the bistatic cross sectionofadius circle
whose surface obeys either Dirichlet or Neumann boundary conditions, which corresp
to TM and TE polarizations, respectively. Meshing the circle consisted of dividing it in
circular segments of equal arc length. Ngstrsample points were distributed on each
patch (parameterized by arc length) according to a Gauss—Legendre integration rule
given order and Legendre polynomial testing functions up to half this order were used
computing local corrections. The resultant local correction linear systems are square.

We performed a series of calculations with different discretizations (i.e., differentnumb
of patches and different Nystmi quadrature orders) and compared the results to the M
series results (shown in Fig. 1). For a given Ngstrijuadrature order (which we henceforth

1 O T T T T T

0.01 HTE .

Bistatic Cross Section (lambda)
o

0.001 : : : : :
0 30 60 90 120 150 180

Angle (degrees)

FIG. 1. Bistatic cross section of aX-radius circle for TM and TE polarizations computed by the Mie series.
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FIG.2. Log—log plotof maximum relative error vs unknown density farfadius circle and TM polarization.
Each set of points is labeled by Nysin order.

abbreviate to Nystarn order), as the size of the patches decreases, the difference bet
the exact result and the FastScat calculation also decreases.

A more quantitative measure of convergence behavior is given in Fig. 2, where we |
plotted maximum relative error (defined as maxp) /owes(6) — 1|], whereo (6) andoe:(0)
are the calculated and exact cross sections, respectivety=f@rto 180 in 1° increments)
versus the density of unknowns for a first-kind integral formulation of the TM polarizati
case. The number of patches spanning the circle ranged from 4 to 2048 and tloeriNyrsket
ranged from 2 to 12. One of the important features to note is that, with enough unknow
the data fit a linear trend line whose slope increases as theddysirder increases. Since
the discretization scale is inversely proportional to the density of unknowns, a linear f
on a log-log plot of error versus unknown density reflects the fact that the error sc
asymptotically a$P, wherep (the order of convergence) increases with Nystrérder.
Large values op signify a high-order algorithm. For the lower Nysin orders, the slopes
of the lines connecting points of a given order are observed to be close to integers, na
2 for order 2; 3 for order 4; and 5 for orders 6 and 8. The slopes for orders 10 and 1-
still higher, although even at the highest sampling densities used, the discretization
has not yet reached the asymptotic regime where each would be expected to have a
of 7.

The results for the second-kind integral formulation of the TM polarization case
very similar. This should not be too surprising, since, despite the additional derivative,
singularity of the kernel is no worse than [og.

The corresponding plot for the TE polarization case, also using a first-kind inte
formulation, is shown in Fig. 3. In the TE case, however, the first-kind integral equat
involves the 2D hypersingular kernel. The effect of using a more singular kernel is that
source must be represented more accurately in order to achieve the same accuracy
cross section, or equivalently, that an equally well represented source (i.e., one empilc
the same collection of unknowns) produces a less accurate value for the cross section
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FIG.3. Log-log plot of maximum relative error vs unknown density far-fadius circle and TE polarization.
Each set of points is labeled by Nysin order.

is easily seen by comparing Figs. 2 and 3. For a given discretization, the calculated c
section for the TE case is two or more orders of magnitude less accurate than tha
the TM polarization. Nonetheless, the TE polarization data also fit linear trend lines w
integer slopes when the discretization is fine enough. In order from lowest (2) to high
(12) Nystom orders, the observed slopes are 2, 1, 3, 3, 5, and 5.

Cross section calculations resulting from the second-kind formulation of the TE polari:
tion scattering problem are generally more accurate than those of the first-kind formulat
In fact, as the Nystrh order increases, they become nearly as accurate as those for the
polarization case. Again, the reason is that the singularity of the kernel for the second-}
TE case is no worse than I¢g, which is also the singularity of the kernels in the first and
second-kind TM polarization cases.

The process of improving a discretization by reducing the size of the patches is ca
“h-refinement.” This is what has been exhibited in the previous two figures. Keeping
number of patches fixed and increasing the number of parameters used to describ
source distribution on each patch, on the other hand, is knowp-asfinement.” With a
high-order Nystoin code such as FastScptrefinement is accomplished by increasing the
Nystrém order for a given meshing. In general, this is the preferred method for improvi
a discretization for two reasons: one can avoid the usually tedious process of remeshin
scatterer, and the accuracy of the answer usually improves faster this way. The data i
next plot demonstrate this feature.

Figure 4 presents the TM and TE polarization data given in Figs. 2 and 3 in a differ
way. The behavior of the calculation for each polarization undegfinement is illustrated
by connecting points corresponding to a fixed number of patches instead of a fixeolyst
order. In some cases, data points corresponding to diystrders higher than 12 have
been added. The fact that the data points on a semilog plot can be connected by n
straight lines indicates that-refinement can achievexponentiatonvergence, as opposed
to the geometricconvergence that was observed Forefinement. The convergence rate
gets higher the larger the patch size.
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FIG. 4. Semilog plot of maximum relative error vs unknown density for scattering from-aabius circle.
Points corresponding to different Nystn’quadrature orders for a fixed patch size are connected by $inkd (
for TM polarization andiashedor TE polarization) and labeled by the number of patches.

With regard to numbers of unknowns, the most efficient way to achieve high accur
is to use a high-order method on large patches. For example, with only four patches
a 30th-order quadrature rule, it was possible to achieve an accuracy bfdrthe T™M
polarization case and 16in the TE case. With this discretization, the unknown density
about 10 unknowns/wavelength and the arc length of each patch is ag)ma\/elengths.
For lower accuracies, the advantage of using large patches and high-order methods
circle is less clear. As a general rule, the optimum discretization is one that uses |
patches and high-order methods over smooth regions of the scatterer and smaller pe
over more highly curved regions.

A.1.b. 201 x 2 A ellipse A 20 1 x 2 A ellipse is a 2D scatterer that is less symmetri
than a circle, but is still smooth. It is a more challenging scattering problem thak-a !
radius circle for several reasons, not least of which is the fact that it extends much r
than a wavelength in at least one dimension. In addition, it is a good candidate probler
applying the discretization rule described above.

In our code, the ellipse is described by the pair of parametric equations,

X = acosu, (24)

y = bsinu,

wherea=10A andb=1 A. A sensible patching, which puts the highest density of patch
in the most highly curved regions and vice versa for the flatter regions, is obtained if
patches cover equal increments in the paramefBne circumference of a 20x 2 ellipse

is about 40.64..

We used FastScat to compute the monostatic cross section of. & 20 ellipse dis-
cretized using several different combinations of patch number and dvWystrder. The
boundary conditions on the surface were either Dirichlet or Neumann, correspondin
TM and TE polarizations, respectively.
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FIG. 5. Monostatic cross section of a 20x 2 A ellipse for TM and TE polarizations. One quadrant of
observation angles is shown; the others may be obtained by considering the fourfold symmetry of the scatte

We do not have at our disposal a series solution for the cross section of an ellipse (whicl
might otherwise use to compute an arbitrarily accurate reference solution). However, we
still estimate the accuracy of the computed solutions by comparing them to the most fir
discretized solution, which we designate the “reference solution.” We computed refere
solutions for the TM and TE polarization cases by meshing the ellipse into 128 patches
putting a 20th-order Gauss-Legendre rule (i.e., 10 sample points) on each patch. We de
that these reference solutions are accurate to at least six decimal places, given the high-
manner in which all the more coarsely discretized solutions are observed to converg
them. Plots of the monostatic cross section versus incident angle for the reference solu
are given in Fig. 5. As seen in the figure, the monostatic cross section for TM polarizat
ranges from about 50 looking at the broadside to less than @.looking at the tip. The
TE cross section is similar, although it is not as smooth a function of angle. In both cas
the dynamic range of the cross section is more than 500.

The p-refinement behavior of the calculations on the ellipse using first-kind integr
equation formulations for both TM and TE polarization is shown in Fig. 6. Like the circle
exponential convergence is observed and accurate solutions are most efficiently obte
when the mesh consists of patches larger than a wavelength.

A.2. Three-dimensional vectorAs in the 2D scalar case, first-kind and second-kinc
integral formulations were explored. For 3D vector scattering off a PEC scatterer, the fi
kind formulation is the electric field integral equation (EFIE) [17]

EN°(x) = iw%ds’ [—G(x, X)) I(X) + k—:LZV(V/G(x, XY I ., (25)
s

tan

and the second-kind formulation is the magnetic field integral equation (MFIE)

HEE0) = =57 300+  dSTVG 06 X) x J0X L (26)
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FIG. 6. Semilog plot of maximum relative error vs unknown density for scattering fromia2@ A ellipse.
Points corresponding to different Nystn“orders for a fixed patch size are connected by lisesd for TM
polarization andlashedor TE polarization) and labeled by the number of patches.

whereG(x, X') = exp(ik|x — X|) /|x — X'| is the Helmholtz kernel in 3Dk = |k| =w/C is
the radiation wavenumbeij, refers to the electric surface curreB™ and H" are the
incident electric and magnetic fields, and the subsdeptmeans that only the vector
components tangent to surface at the field point are being used.

The EFIE and MFIE can be summed to form a combined field integral equation (CF
having some of the same desirable properties as the CFIE in the 2D scalar case. Alth
no CFIE results are reported in this paper, the same techniques apply.

Note also, that, while the results presented here are restricted to PEC scatterers, itis
to generalize the method to the more general scattering problem of homogeneous re
with smooth boundaries.

A.2.a. One-fourthA-radius sphereWriting a code that correctly calculates 3D vecto
scattering results is more difficult than writing a correct 2D scalar code. This is doubly t
if the code is designed to be high order. Therefore, it is particularly important to vel
that the output of a purportedly high-order 3D vector code actually converges to the co
answer under both- and p-refinement and that it does so in a high-order fashion. In th
subsection, we present results demonstrating that our 3D vectoroRyswde achieves
high-order convergence to the correct answer on a sphere.

A sphere is the ideal surface to use for benchmarking a high-order 3D vector code fo
same reasons that a circle is ideal for a high-order 2D scalar code—it is uniformly smt
and the accuracy of computed results can be determined by comparison to the Mie ¢
solution. Since the size of the surface, and therefore the number of unknowns, grov
proportion tar 2 for a sphere, as opposed to jusor a circle, memory limitations prevented
us from pushing the unknown density on a-tadius sphere to the same extremes as we
possible on a 1-radius circle. Nonetheless, when we did run FastScat dni@adlius sphere
with a wide selection of discretizations, we found that the results converged to the co
answer just as one would expect for a high-order scattering code. To reach the asym
regime, where the convergence behavior is more obvious, however, we chose the r
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TABLE |
3D Quadrature Rule and Testing Function Parameters

Maximum
Nystrom Number testing Number
quadrature sample function testing
order points degree functions

2 1 0 1

3 3 1 3

5 6 2 6

7 12 3 10

8 15 4 15

of the sphere to bé A, which allows us to increase the unknown density fourfold befor
running out of primary memory (for storing the full impedance matrix). For this reasc
alone we present the data for tba-radius sphere.

The internal surface representation of the sphere corresponds to an ideal sphere
its surface is assumed to be perfectly conducting. The coarsest patching of the sp
consists of 20 identical triangular patches, formed by mapping the triangles of an inscri
icosahedron onto the surface of the sphere. Finer meshes were generated by dividing
of the 20 triangles inta? nearly identical subtriangles, whareanged from 2 up to 10. The
distribution of Nystom quadrature points on each patch was determined by a high-ort
triangle rule [16]. The triangle rule orders that we used and corresponding number:
sample points are given in Table I. The number of testing functions (products of monom
in the two surface parameters) and the maximum degree of the testing functions used
each triangle rule are also listed in the table.

In all cases except Nystni order 7, the number of sample points equals the number
testing functions, resulting in an exactly-determined local correction linear system. In
seventh-order case, the maximum testing function degree was chosen to make an u
determined linear system.

Solutions for the bistatic cross section of lime—radius sphere were computed with the
various discretizations and compared against the Mie series solution (shown in Fig. 7).
a sphere this small, the cross sections for the two polarizations are similar (in term:s
smoothness and dynamic range), so we present the discretization refinement results
for the90 case. Cross polarization results are also not presented at all, although it may
noted that such computed cross sections were extremely small (i.e., always less thal
co-polarized results by at least eight orders of magnitude).

The convergence behavior of the scattering results umdefinement is shown in Fig. 8.
Refining the mesh for a given Nystri'order always improves the accuracy of the solution
It is apparent for the lower Nysini orders that the data approach linear trend lines wit
integer slopes as the patches get smaller, just as they did in 2D. In the case of the E
the slopes of the trend lines for Nysin“orders 2 and 3 are both unity and in the case c
the MFIE, they are 2 and 3, respectively. For the higher orders, the slopes appear t
increasing, but it is not as clear what their asymptotic values will be. For dystrder 5,
the last pair of points produce slopes close to 3 and 5 for the EFIE and MFIE solutio
respectively. In all cases, the solution at a particular discretization obtained by using
less singular kernel (i.e., the MFIE) is more accurate.
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FIG. 7. Bistatic cross section of ?A-radius PEC sphere fé® and¢¢ polarizations computed by the Mie
series.

The behavior of the sphere results ungenefinement are shown in Fig. 9. The observe
p-refinement behavior is similar to that in the 2D scalar case. The fastest convergen
usually achieved by applying a high-order quadrature to a coarse meshing. One nc
difference from the 2D scalar case is that the 3D vector calculation requires a higher de
of unknowns to achieve a comparable maximum relative error in the bistatic cross sec
The jaggedness of therefinement curves for the EFIE data may be explained by referer
totheh-refinement plot, which shows that the 2nd- and 3rd-order results have nearly the
accuracy, and that the 7th-order results are actually less accurate than those for 5th-c
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FIG. 8. Log-log plot of maximum relative error vs unknown density ﬁox—radius PEC sphere i#¥ po-
larization. Points obtained with different meshings but the same diystrrder are connected by lines. A solid
(dashed) line indicates use of the EFIE (MFIE) integral formulation.
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FIG. 9. Semilog plot of maximum relative error vs unknown density for scattering fro}maadius PEC
sphere. Points corresponding to different Ngstruadrature orders for a fixed patch size are connected by line
(solid for MFIE anddashedor EFIE) and labeled by the number of patches.

For Nystiom orders higher than about 8, problems related to ill-conditioning arise in tl
EFIE formulation. Although the increasingly ill-conditioned nature of the local correctio
linear system is a contributing factor, the more important contribution probably comes fr
the fact that the EFIE is especially susceptible to conditioning problems when th@idystr
sample points get too close together. Unfortunately, this is exactly what happens for
higher-order triangle rules. As the order increases, the quadrature points tend to bunc
near the edges and corners of the triangle. It may be possible to overcome this problet
inventing different high-order triangle rules with better sample point spacing and by us
a better conditioned integral equation formulation such as the MFIE or CFIE (combin
field integral equation).

A.2.b. 24 x2 A x 0.2 X ellipsoid As an example of a smooth, but less symmetric 3L
scatterer, we next consider a PEC ellipsoid with principal axis diametera 2, and 0.2\.

We computed the monostatic cross sections of this discus-shaped scatt&#rarid ¢
polarizations using a MFIE formulation and an eighth-order quadrature rule, which f
15 points on each patch. Four different meshings, comprising 20, 80, 180, and 320 patc
were tried. Each meshing was tailored to put smaller patches in the vicinity o&tHea
equator, where the one of the radii of curvature is small, and larger patches everywhere
where the surface is relatively flat. The number of unknowns distributed over the.%.47
surface of the ellipsoid in the four cases ranged from 600 with the coarsest meshing to ¢
with the finest.

As we did with the ellipse in 2D, we can designate the solution computed with tl
finest discretization to be the reference solution and obtain accuracy estimates of the
solutions by comparing them to this reference solution. Figure 10 shows the refere
solutions for th&6 and¢¢ polarization cases.

Differences between the reference solution and the other, less finely discretized solut
are shown in Fig. 11. As expected, the accuracy of the solution improves as one refine:
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FIG. 10. Reference solutions for the monostatic cross section of a 2 A x 0.2 » PEC ellipsoid i and
¢¢ polarizations. At 0the observer is looking at the flattest part of the ellipsoid; atr@0is looking edge on.

discretization. It should also come as no surprise that the solutions are also most acc
near 0 and 180, where the cross section is highest. What is particularly notable about
plot, however, is the fact that the error in the cross section decreases by orders of magr
when one reduces the (linear) size of each patch by factors of 2 or 3. Such large reductic
the error are a direct consequence of our using an exact surface description and a high
rule (8th-order, in this case) on each patch.
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FIG. 11. Semilog plot of the differences between cross sections computed using meshings consisting ¢
80, and 180 patches, and a reference cross section computed using a meshing consisting of 320 patch
asymmetry of each curve reflects the fact that the meshings did not possess reflection symmetry.
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B. Run-Time Performance Comparisons

In this section we compare the run-time performance of our high-order dtysiri-
plementation of FastScat to that of two method of moments scattering codes. The
comparison code is an earlier, high-order Galerkin implementation of FastScat [20].
second is a low-order code (RWG basis and testing functions on flat facets) called F
[21]. We ran each code under comparable conditions to obtain solutions for the bist
cross section in th@d polarization of three different size PEC spheres. The high-ord
Nystrom discretizations were constructed using an eighth-order quadrature rule (15 sar
points per patch) and fourth-degree testing functions for computing local corrections.
high-order Galerkin discretizations were constructed from the same surface mesh u
patch-based, polynomial (in the parameterization) basis functions up to degree 4 to |
the same number of unknowns per patch, namely 30. The surface mesh used by FISC
necessarily different from that used by both versions of FastScat because, with an R
discretization, one unknown is associated with each edge rather than multiple unkno
being associated with each patch. Nonetheless, its surface meshes were constructed to
tain the density of unknowns at about 7.7 unknowns/wavelength, the same as for the |
FastScat discretizations. All computations were performed using a dense matrix fill,
LUD solver, and a MFIE formulation.

Table 1l gives a summary of the results. The reported times are run times on a SPARC
workstation with 512 MB primary memory. The total run time is broken into setup tim
(which includes the time spent setting up the problem and filling the impedance matrix) ¢
solve time (which includes the time spent performing the LUD and solving for the bista
cross section at 181 angles).

In comparing the results from the two high-order implementations of FastScat, two f
tures are especially noteworthy. The first is that the high-order Galerkin result is m
accurate by about a factor of 5 than the high-order Mystrésult. The second is that use
of the Nystom discretization can speed up the setup phase of the computation enormot
with the speedup factor increasing as the number of unknowns increases. The observ
that the high-order Galerkin code computes results somewhat more accurately thar
Nystrdm code is consistent with our experience computing cross sections for other sca
ers, both in 2D and 3D. It is compensated, however, by the fact that the setup phase
to a lesser extent the solve phase) runs much faster using theohystide. Furthermore,
the factor of 5 difference in accuracy is actually less significant in this case than it wol

TABLE Il
Nystrom vs Galerkin Performance on PEC Spheres

Radius No. of Setup Solve RMS

Scattering code ) unknowns time (s) time (s) error (dB)
FastScat (Nystrh) 0.9 600 74 36 0.35
FastScat (Galerkin) 0.9 600 972 88 0.07
FISC (Galerkin) 0.9 600 83 42 1.28
FastScat (Nystrh) 1.8 2400 539 2742 0.26
FastScat (Galerkin) 1.8 2400 8177 3395 0.05
FISC (Galerkin) 1.8 2430 873 2255 0.61
FastScat (Nystrh) 2.7 5400 1953 31735 0.097
FastScat (Galerkin) 2.7 5400 38803 36152 0.021

FISC (Galerkin) 2.7 5880 8230 28795 0.723
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be if we were comparing low-order codes. Given ¢h°) convergence rate expected of
an eighth-order quadrature rule, it should be possible to recover the factor of 5 in accu
with furtherh-refinement by a modest 20%.

The high-order Nysbifh code computes more accurate answers than the low-or
Galerkin code (FISC) in all cases. For the spheres considered here, this is largely
to the fact that FISC uses a low-order surface representation. The high-orderrgsile
also requires less setup time, an advantage that grows as the problems get bigger. E
comparison based on total solution time shows the high-order diyistnplementation of
FastScat to be more efficient for computing accurate answers.

Finally, it is useful to note that an equivalent Nystr discretization exists for every
method of moments discretization and vice versa [22], so it is possible, at least in princ
to eliminate the observed accuracy discrepancy between the two versions of FastSc
implementing a Nystith code whose discretization error precisely matches that obtainec
the Galerkin code. We have not attempted to do this, but suspect that to do so would ¢
additional complications and computations that would negate the substantial simpl
and efficiency of the present implementation. On balance, we find the high-ordeoidyst
method in its present form preferable to the high-order Galerkin method for solving inte
equations, especially when one adds in its other benefits such as reduced implemen
complexity and potential for significantly improved FMM performance.

V. SUMMARY

The standard Nystrih method is a simple and efficient mechanism for discretizing int
gral equations. We have shown how it can be adapted to provide a high-order discretiz
of the boundary integral equations of wave scattering in 2D and 3D, which have sing
kernels. Numerical results obtained with a software implementation of this method sl
that the algorithm can achieve high-order convergence to the correct answer for scatt
cross sections in 2D and 3D. We also demonstrated that a high-ordeoiyside consid-
erably reduces the CPU time cost of a scattering calculation by comparison to a high-c
Galerkin code, especially the precomputation time cost. The high-orderdiysude also
outperformed a well-tuned, low-order Galerkin code (FISC) in terms of solution accur.
and total run time. Demonstrations of how a high-order Nystcode can be used in con-
junction with the FMM to reduce the memory and CPU time requirements of solving la
scattering problems will be the subject of a future publication.

APPENDIX

A. Local Corrections

Eleven different kernels arise in boundary integral equation formulations of 2D sce
3D scalar, and 3D electromagnetic scattering:

2D & 3D Scalar 3D Electromagnetic
G(r)
o G(r)(tX) - t'(x))
n - v'G(r)
t(x) - (V'G(r) x t'(X))
f-VG(r)

. . tx) - VI(V'G(r) - t'(X))
-V -VvV'G(r))
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where

FHGV(kr) in 2D,
uk in 3D,

r

G(r) = (27)

r is the magnitude of the vector=x' — x from the field point at to the source point
at x'; k is the wavenumber of the wave;andfi’ are the unit normals to the surface at
the field and source points, respectivelyandV’ are gradient operators for the field and
source coordinates, respectively; a‘ﬂéf) refers to the zeroth order Hankel function of the
first kind, defined byHS" (x) = Jo(x) + i Yo(x), whered, (x) andY,(x) represennth-order
Bessel functions of the first and second kinds, respectively.

For the 3D electromagnetic case, the source and excitation are surface tangent vectc
it becomes necessary to compute local corrections for four scalar kernels, one for each c
four combinations of (two) independent surface tangent vectors at the field point and (t
independent surface tangent vectors at the source point. These surface tangent vect
the field and source points, represented®y andt’(x’), respectively, are included as part
of the 3D electromagnetic kernel in recognition of this fact and for clarity of presentatio

In this section, we show how to compute local corrections for each of these kernels.
will make use of the vector calculus identity [23]

(A - V)R -V'gr) = (A-A)(V-V'gr) — (A x V) - (/' x Vg(r)) (28)
) K3g(r) — (A x V) - (A" x V'g(r)), (29)

~
3)

where the second line follows gf(r) obeys the homogeneous Helmholtz equation
(V2 +Kk?g(r) = 0. (30)

This identity allows one to convert between double normal derivative and double tanger
derivative operators on the Green function.

A.1. Two-dimensional scalar

A.l.a.G(r),
. . 1
G(r) = l—lHél)(kr) - l—l\]o(kr) = 3 Yokn). (31)
N——
regular singular

This kernel may be written as the sum of a regular part and a singular part. It is neces:
to compute local corrections only for the singular part because the regular part will
efficiently integrated by the underlying high-order quadrature rule. The fun®jckr)
contains a lo¢r) singularity. Therefore, one can use “lin—log” quadrature rules [24] t
efficiently compute local correction integrals when the region of integration contains t
field point, and Gauss—Legendre rules otherwise.

A.lb.fiY - V'G(r),
regular regular
regular N ~"— singular
A-r d ~—— Ji(k r —~—
ﬁ’~V’G(r)=¥aG(r)_ /e 1lirr)+z—krvl(kr). 32)

regular singular
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The first term is regular; the second is singular. The second term is singular not bec
its value diverges at the origin (in fact, limo(A’ - r /r2)krY.(kr) = 1/7 R, whereR is the
radius of curvature of the surface at the field point), but because its higher derivatives
The singularity is still a lo¢r) singularity, so local correction integrals can be computed
the same manner as for the previous kernel.

A.l.c. - VG(r),

regular regular
regular e ~~— singular

Nrd e - iZkZ(ﬁ~r) ——Ar—' krakn.  (33)

regular singular

This kernel is identical to that fai’ - V'G(r) with i’ replaced by—fA and it has similar
properties.
A.ld. (- V) - V'G(r)),

(- V)R- V'G(r))

()@ -1) 1dG(r) d2G(r) B (Ai-A) dG(r) (34)
a r2 rdr dr2 r dr
regular regular

'k2 regular 3 (/\_kr) m regular
_ |_ /—’A .T/ 1 B . . o N—
=5 | (- — 2 Rkn

regular
+ (A - V(@A - V'GRI)). (35)

hypersingular

Applying the derivatives to the real part Gi(r), namelyGR(r) = —%Yo(kr), produces a
term that is not merely singular but hypersingular. When convolved with a regular funct
this termis not (in general) integrable because it diverges Jik&, telative to the field point.
The following discussion shows how to manipulate it into a form that allows numeri
evaluation when the region of integration contains the field point. When the regior
integration does not include the field point, Gauss—Legendre rules may be used.

The convolution offi - V)(/' - V/GR(r)) with testing functionf (x') is

/ dl’(d - VYA - V'GR(r)) f (X). (36)
C

Strictly speaking this is not a proper integral unless it is assumed to represent the lim
value as the field point approaches the surface from off the surface. We implicitly m
this assumption throughout. Using the vector identity (29) and the fac@Rat) obeys
the homogenous Helmholtz equation wh&r not onS, we can convert the double normal
derivative operator to a double tangential derivative operator:

/ dI'[k2(A - AHGR(r) — (A x V) - (A" x V'GRIr)] f(X). (37)
C
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In 2D, we can rewrite the second term even more explicitly in terms of tangential derivativ
obtaining

/ dl'[k?(A - AHGR(r) — - V) @ - V'GR(Ir)] f (X), (38)
C

wheret andt’ are unit tangent vectors at the field and source points, respectively. The f
term has a lo@) singularity, which we already know how to integrate numerically; the
second term is hypersingular and requires further manipulation.

The gradient operatofé andV’ commute with the unit tangent vectdfsandt, respec-
tively, so we can rearrange the factors of the second term and integrate it by parts as

—/ dl’'@- v - V'GRr)) f(x)
C
__ / dl f )T V(& - VGR()) (39)
C

_ _/Cdm' V' (F)E- VGR(M)))
+/Cd|/(f’.v’f<x’))(f-VGR(r))- (40)
The first integral on the right-hand side of (40) is
_/Cde«v/(f(x/)(%ve“(r)))
_ _/Cdv-v’(f(x’)(f-VGR(r)» (42)

= —[f)E VGRIIZ: (42)

i.e., since the integrand is a total derivative, the value of the integral is a difference of val
at the endpoints. Rearranging factors and using

VGR(r) = —-V'GR(n), (43)

we can rewrite the second integral as
—/ dl' V'GR@r) - [t @ - V/ (X)) (44)
c

In this form, the integral is not yet evaluable becaw$&R(r) diverges like %r relative to
the field point. We can make it integrable by adding and subtracting a smooth function t
matches the integrand at the field point. Specifically, let us write (44) as
—/ dI'V'GRr) [t - V(X)) =TTV F(X)] —/ dI' V'GR() - [T/ - V' f(x))],
C C
(45)
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wheret’ - V' f (x) andt - V' f (x) represent tangential derivatives of the testing funcfioxi)
evaluated at the field and source points, respectively. The first integral in this expressi
integrable because the zero of

fd - v i) -t v X)) (46)
at the field point cancels the pole froMGR(r) at the field point, leaving a singularity no

worse than lo¢ ) relative to the field point. By rearranging factors, the integrand of t
second integral can be shown to be a total derivative, so that

—/CdI’V’GR(r) QP@E V' E0)]
_ _/Cdrf' (VGROE- V' F(0) (47)
= —[GROHE- V' f 0] (48)
Putting the various terms together, we arrive at the following numerically tractable exp

sion for the integral needed to compute local corrections for the hypersingular compo
of the kernel

/ dl'{k2(A - A)GRIM F(X) = VGR@) - [T - V(X)) — T/ V F(X)]}
—[f)(- VGR(r) + GRin (- V’f(><))]c1, (49)

or, substituting foiGR(r),

——/dl’{(n A)Yo(kr) f(X) + 1( )A {tﬂ( )—t—(x)}}

dl dr
Yi(kr) - <
211 . ar
4[k o ———-Hfx) Yo(kr)dl,(X)] : (50)
A.2. Three-dimensional scalar
A.2.a.G(r),
ikr H
G(r):ér_:ismﬁkr)chos:kr). (51)
—_—
regular singular

Asinthe 2D scalar case, this kernel may be written as the sum of a regular part and a sin
part. It is necessary to compute local corrections only for the singular part because
regular part will be efficiently integrated by the underlying high-order quadrature rt
The singular term contains g1 singularity. Computing local corrections for the singula
part requires evaluation of integrals of ¢ki)/r times polynomials in the parameters
u= (ul, u?) used to describe the surface. When the region of integration contains the 1
point, it may be subdivided into triangles with the field point at one vertex, and the integra
may be performed by using the Duffy transformation [25] and Gauss—Legendre pro
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rules on the subtriangles. Otherwise, one can apply efficient quadrature rules for sm
functions such as high-order triangle rules [16].
A2.b. /- V'G(),

Y, i -rd (ikr =) ek A .r
n.-vGr)= aG(r)_ o , (52)
regular | singular
- regular regular /—’A
g (cogkr) — S e ( ) 1
= |k3( 2 ) (A -r)— - (53)
regular singular

In 2D, (/' - r)/r?is a regular function with a removable singularity at the origin. In 3D, the
singularity is removable only if the principal radii of curvature of the surface at the fie
point are the same. Otherwise its limiting value depends on the direction from which
origin is approached. Nonetheless, local correction integrals can be computed efficientl!
means of triangle subdivision and the Duffy transformation.

A.2.c. i - VG(r),
regular | | singular
- regular regular —_——
k __ sin(kr) "
ﬁ.VG(r)z—ik3(Cos( Zlir)z kr ) (A - r) + (cogkr) + (kr) sin(kr)) U r)r}. (54)

regular singular

This kernel is identical to that fof’ - V'G(r) with fi’ replaced by—A and has similar
properties.
A.2.d.(A- V)R - V'G(r)),

(A- VYA - V'G(r))

. A (1—ik - N N K?r2 4+ 3ikr — 3\
= (- n’)(%) e+ (AR - r)<r++> ekr (55)
regular
regular
regular sin(kr) smk<kr> cogkr) regular
k —
_ie| (B meoskn) B e e () @@ D
(kr)? (kr)?
regular
+(A- V)@ - V'GR(r)). (56)

hypersingular

Applying the derivatives to the real part@ir ), namelyGR(r) = cogkr)/r, produces a
term that is not merely singular but hypersingular. When convolved with a regular functic
this term is not (in general) integrable because it diverges Jiké telative to the field point.
The following discussion shows how to manipulate it into a form that allows numeric
evaluation when the region of integration contains the field point. When the region
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integration does notinclude the field point, standard, high-order rules for integrating reg
two-parameter functions may be used.
The convolution offi - V)(/' - V'GR(r)) with testing functionf (x') is

/ ds(f- V)R - V'GR(x, x)) f (X) (57)
S
or
/ds’[kz(ﬁ ANGRX, X) — (A x V) - (A" x V'GR(x, x))] f (X), (58)
S

where the second form follows from Eq. (29). As in the 2D case, we implicitly assum
limiting procedure whereby the field point approaches its final destination on the sur
from off the surface. The first term in brackets is only singular like; ve already know
how to deal with such expressions. It is the second term that requires further atten
Write this term in component form using the Levi—Civita tenggr and manipulate the
expression as shown using the fact thandx’ are independent. Summation over repeate
indices is implied.

—/ds’((ﬁ x V) - (A" x V'GR(x, x))) f (X)
S

=—(ixV)- /ds’(ﬁ’ x V'GR(x, X)) f (x) (59)
S
= —€ijkN; % [/ds’(ﬁ’ x V'GR(x, x)) f (x’)} (60)
S i
= —€ij N, Udg(ﬁ/ x V' (GR(x,x))) f(x/)} (61)
S i

= —€jkNj [/Sds’ A x V’(f(x/)akGR(x, x’))}

+ €jkN; [/stI 8kGR(X, X x V' f (X/)):| (62)

The last step shows the result of integrating by parts. Letting
¥ = Fx)3GRX, X), (63)
we apply an adjunct to Stokes’s theorem,
/ds(ﬁ x V) :}1{ dly (64)
S S

to the part of the first term inside the brackets, to get

—€ijkN; [/Sdg A x V' (f(x)aGR(x, x/))}

= —¢€jjkN;j [ésdl’f(x/)akGR(x, X/)] (65)
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= _ei,-kn,-jf dlf f x)3GR(x, X) (66)
S

=—¢ d'- (A x VGRx, X)) f(X), (67)
aS

which is integrable. To evaluate the rest, use the fact that
VGR(x, x) = =V'GR(x, X (68)

to write

€ijkN;j Udg KGR, XA x V' (X))
s _

= —/ds’ WGR(X, X)exij (A" x V' T (X))in; (69)
S

= —/ds’ V'GR(x, X) - [( x V' f (X)) x A (70)
S

At the field point, the vector in brackets becomes
(A x VX)) x i=—Ax A x VX)) =V fX). (71)

Some notation from differential geometry is useful at this paipk = 9ax/du” is the
derivative of the surface with respect to surface param#tgag,,, is the metric tensor given
by 9,,x - 9,X; g*” is the inverse 0§,,,; g is the determinant af,,,; andd,, f represents the
derivative of f with respect tas*, i.e.,al;f =af (X'(u))/ou*.

Thus, in the language of differential geometry, the vector in brackets becomes

ITPYANG
aaux

Va(u)

a"fa X =g"a, fa x = (72)

whenat is defined as

Vowgra) f (73)

evaluated at the field point. Therefore, we may write

—/ds’ V'GR(x, X) - [(f x V' f (X)) x A]
S

= /ds’ V'GR(x, X) - [n x (V' x V' (X)) + a ]
S

V()
/,La/X/
— [ ds V'GRx, X’ -[“ b } 74
/ o0 |22 (74)
The first term is integrable because the zero of

[A (A" x V' (X)) + Ma’ibx/] (75)

A x (A x X

V()
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at the field point cancels one of the two poles frEnG R (x, x') at the field point. The other
term may be rewritten as

ny ¥
_ ds/ V/GR , N . |:a 13 :|
/s K V)

l,l,a/x/

_ [ dsv/GR [a “ } 76
/S I . x) m ( )
/,l,a/ !

/ds’VH (G (X, X)@>
a”/ds’ GRX, XV - {Ej"—x} (77
s A/g(u)

where the last step shows the result of integrating by parts. The part of the first teri
parentheses has no normal component so it can be converted to a boundary integral
the divergence theorem for open surfaces (see Appendix B):

/ds’V ( GRx, x) “a/X/)
! NGIM)

j((ou’ ) ( GR(x, x)“ua/x) (78)
— X .
3s Va)
GR(x,X)
di - [ x (o9 X . 79
7{ [Fx (e 2,)] =7 (79)

The second term is zero since (see Appendix C)

a/
Y "—] =0. (80)
: L/Q(U)
Putting the various terms together, we arrive at the numerically tractable expressiol

the integral needed to compute local corrections for the hypersingular component o
kernel,

a A . . atd’ X
ds’(kz(n SAYGRx, X) f(X) + V'GR(x, X) - [n x (A" x V' (X)) + —=£ D
S

A/gu)
. ) GR(XN))
—¢ d- VGRx, X)) f (X ' my X)) = 81
A ((nx XN 100+ (W x (a3x)) =X (81)
where
= /agwg"a, f (X' (u)), (82)

evaluated at the field point. The first integral is a surface integral whose integrand dive
no worse than Ar near the field point; the second is a boundary integral of a regular funct
(so long as the field point is never situated on the boundary).
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A.3. Three-dimensional vector

A.3.a.G(r)(t(x) - t'(X)).

This kernel is identical t&(r) in the 3D scalar case, except that the regular functio
with which it must be convolved is the inner product of a tangent vec¢torat the field
point and a tangent vectti(x’) at the source point. Four sets of local corrections must b
computed for each field point since there are two independent tangent vectors at each
point and two at each source point.

A.3.b. t(X) - (V'G(r) x t' (X)),

t- (VG(r) x t'(X))
gk T) x 1) -1 1

= (ikr — 1) > r (83)
regular
m regular
_ i3 kr 75V .
=ik TR ((t(X) x t'(x)) - 1)
regular
singular
regular ~~—
+ (cogkr) + (kr) sin(kr)) () Xrtz(x)) dd) r} (84)

singular

The analysis of the singular component is as follows. We can wijen terms of surface
derivatives at the field point

t(x) = ¢*9,x (85)

with some pair of coefficients*, u =1, 2. Lettingu’ denote the parameterization of the
source point relative to the field point, we can write the expansiort§#y andr (x') about
the field point,

t'(X) =£°9X = E7(0pX + 0,0, X U7 + -+ +), (86)
for some other pair of coefficiengs with p =1, 2 and
rx) =o.xu=+.... (87)
Then

() x V(X)) - 1) = C"EP(0X X 0pX + 0, X X 006X U + -+ )« (I XUT +---) (88)
= CHEP((8uX X 0p0,X) - 3 X)UUT 4 -+ - (89)

Since the leading termiryt? is also second order inf, the ratio((t(x) x t'(x')) - r)/r?> does
not diverge in the limit as — 0. However, like the factor&Y - r)/r2 and(f-r)/r? from the

3D scalar case, this ratio is not a regular function unless the principal radii of curvature
the field point are identical. Computation of local correction integrals for each combinati
of tangent vectors at the field and source points proceeds as in the corresponding 3D s
case.
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A3.c. t(X) - VI(V'G(r) -t/ (X)),

() - VI(V'G(r) - t' (X))

—ik K’r? 4+ 3ikr — 3\
=(t- t)( r)elkr-i-(t N - r)(%)e‘kr (90)
regular
regular
—————"———rregular ; sinkn) _ ~oqkr regular
K sintkr) G S(kr)
—iK3 w(t t') + K2 ke 3( kr)? >(t~|’)(t'-l‘)
a (kr)? (kr)?
regular
+ (- VIV'GR(r) - t). (91)

hypersingular

The result is very similar to that in the 3D scalar case. The real pa@(pf, namely
GR(r)= cogkr)/r, produces a hypersingular term that is not (in general) integrable |
cause it diverges like /12 relative to the field point. We now show how to manipulate |
into a form that can be evaluated numerically when the region of integration contains
field point.

Reformulating the integral of the hypersingular term begins with an integration by pa

/S ds () - V)(V'GR(x, X) - t/(x)
= /S ds't'(x) - Vj (t(x) - VGR(x, X)) (92)
- /Sds’ Vi - [ ) ) - VGR(X, X))]
_ /S ds (09 - VGR(, X))(V] - V(X)) (93)

The first term on the last line can be converted to a boundary integral using the diverg
theorem for open surfaces (see Appendix B) and the fact that the argumeéptisftan-
gential to the surface:

/ds Vi - [E ) ) - VGR(x, X))] :f{ dl@ -t (X)) (X - VGR(x, X)). (94)
S aS
The second term is
—/ds’(t(x) S VGRX, X))V -t (X)) = /ds’ V'GR(x, X)) - [t (V] - t'(X)].  (95)
S S

Write this as

/ds’ V'GR(x, X)) - [t(x)(v’ (X)) — oYX ] /ds’V GR(x, X)) - {aua’/‘%] (96)
s ’ I NGTS NGIONE
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where the constant” is chosen to makta(x)(Vl’| -t'(xX)) anda’kalgx//«/g(u) equal at the
field point. In other wordsy* is defined as

VIWgH tx) - 9;x) (V) - t'(x)) (97)

evaluated at the field point. The first term is integrable because the zero of

[%x)(V’ t'(x)) — aua’,‘X/] (98)
I NGIO)

at the field point cancels one of the two poles frnG R(x, X') at the field point. As shown
in the 3D scalar case, the second term reduces to the boundary integral:

"y x
/ds’ V'GR(x, X)) - [u]
S

A/9(u)
N GR(x, X)
— b dl A x (@t x)] e X) 99
9s [n X(Ol MX)] /g(u) ( )
1y x
— ¢ dre. (GRx x)e ) 100
s ( ST (100)

Putting the various terms together, we arrive at the numerically tractable expression
the integral needed to compute local corrections for the hypersingular component of
kernel,

/ds’ V'GR(x, X)) - [t(x)(v/ (X)) — aﬂa’,‘x/]
s ’ ” V()
//,a/ !
+ ¢ dI'E. ((t(x) S VGRX, XD (X) + GR(x, x’)“ wX ) (101)
3s a(u)

where

@ =+/gU g t(x) - 3,X) (V) - U'(x)) = /g g (t() - 3,x) (g7 8,t - 9,x), (102)

evaluated at the field point. The first integral is a surface integral whose integrand divel
no worse than Ar; the second is a boundary integral of a regular function (so long as t
field point is never situated on the boundary).

If, as suggested in Section I11.C.3, th¢h tangent vector at the field point (with surface
parametertl) is given by

tu(u) = aMX(U) (103)

and thevth vector testing function associated with scalar testing functibh(u) is given
by
a,X(U)

to W) = 750 £ W), (104)



HIGH-ORDER NYSTFOM DISCRETIZATION 661

then Eq. (101) simplifies to
/ds’ V'GRx, X) - (9.x0; T (W) — 3/ x'3] £ % (up)) /+/g(u)
S

+ ¢ dlI'& - (GRx, x)d, F® (u)d/ X + (3.x - VGR(x,x)) f R wa)x) /+/g(u).

s (105)
B. Divergence Theorem for Open Surfaces
Substitute
B=AxA (106)
into Stokes’s theorem
/dsﬁ-(VxB)= d-B (107)
S S
to get
/dsﬁ-(Vx(ﬁxA))
JS
=/dsﬁ~[ﬁ(V-A)—(ﬁ-V)A—A(V~ﬁ)+(A~V)ﬁ] (108)
S
= /ds[(VH <A)— (A - AV -] (109)
S
= dl - (h x A) (110)
S
= ¢ (dl xA)-A (111)
S
= ¢ dlé-A, (112)
S
where we have used the definition of tangential gradient

and the following equation which relates the vector line elerdéand the surface normal
f to the scalar line element and the unit edge vectér

d x i =dlg (114)
and the observation that
A-[(A-V)A] =[(A-V)A]-A = %(A-V)(ﬁ-ﬁ)zo. (115)

In other words, the divergence theorem for open surfaces is

/ds[(V” “A) — (- ANV )] =% diée A= 7{ @l x A - A, (116)
S aS JaS
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which simplifies to
/ds(V”.A)zj{ diég-A=9¢ dlxni)-A (117)
S 9S S
whenA is everywhere tangential 8.

C. Proof thatV, - [9,X'/+/g(u)] =0

Note. Summation over repeated indices is implied:

! X/ ! /
v/ . 12 — 8/p 12 . a/ /
” L/g(u’)} (Jg(u‘)) o

— po‘a/ M )~8'X’

? ”(«/Q(U) ?

Y <a;,a,;x’ 9x (u)) iy
JaWw)  2\/gu)3 w9 ’

|
Q

gpg 8/ /., /X/

= 9,0, X - X — L——L— (2g(u)g*’ 3, X - 8] dpX
g(u)(”“ X gy (PWITX8n0)
po

= gg(u) (9,X - 0,0/,X — 9,0 I, - 0] 05X)
1 Y O N, ! !

= 750 (g7 a)x - 0,0/, X — 8790, x - 9, 9;X)
1

_ o0/ ! 7 al af a/ .,/ 1 al

= 75 (g°7a,x - 8,0, X — g9, X - 9/, 9;X)

_ 1 o gy .5 9 X o'y .9 9’ x) =0

= g(u)(g X - 9,9, x —g?a,x - 9,9,x') =0.

ACKNOWLEDGMENTS

We are grateful to Drs. Vladimir Rokhlin and Leslie Greengard for considerable guidance regarding the us
high-order Nystoin discretizations in scattering calculations. We also thank Dr. George Valley for reviewing tl
manuscript and offering useful suggestions forimprovement. The U.S. Government's right to retain a nonexclt
royalty-free license in and to the copyright covering this paper, for governmental purposes, is acknowledged

REFERENCES

1. J. J. Ottusch, Performance comparison of FastScat(TM) and RAMZPresentations of Electromagnetic
Code Consortium Annual Meeting, Albuguerque, NM, May 1994

2. L.R.Hamilton, J. J. Ottusch, M. A. Stalzer, R. S. Turley, J. L. Visher, and S. M. Wandzura, FastScat benchn
data, inProc. 1994 HAVE FORUM Symposiutifright Patterson AFB, OH 454-75280l. |, p. 255 (Wright
Laboratory, Feb. 1995). [WL-TR-95-6003]

3. S. Wandzura, High-order discretization of integral equations with singular kernit& EAntennas Propag.
Soc. Int. Sympos. Digest, Newport Beach, @&A. 1, p. 792 (IEEE, New York, June 1995).

4. J. S. Kot, Computer modelling of mm-wave integrated circuit antennas using theoiNysigthod, in

International Conference on Computation in Electromagnedgs. 3, p. 25 (IEEE Press, New York, Nov.
1991).



10.
11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.
23.

24.

25.

HIGH-ORDER NYSTFOM DISCRETIZATION 663

. R. Kress, Numerical solution of boundary integral equations in time-harmonic electromagnetic scatte
Electromagnetic40, 1 (1990).

. W. H. Press, B. P. Flannery, S. Teukolsky, and W. T. Vetterlignerical Recipes in C—The Art of Scientific
Computing({Cambridge Univ. Press, Cambridge, 1988).

. L. M. Delves and J. L. Mohame@omputational Methods for Integral Equatiof@ambridge Univ. Press,
New York, 1985).

. J. Strain, Locally-corrected multidimensional quadrature rules for singular funcBofs J. Sci. Comput
16, 992 (1995).

. S. M. Rao, D. R. Wilton, and A. W. Glisson, Electromagnetic scattering by surfaces of arbitrary|&tzpe,

Trans. Antennas Propa@P-30, 409 (1982).

S. M. Wandzura, Electric current basis functions for curved surfatestromagneticd2, 77 (1992).

R. Coifman, V. Rokhlin, and S. Wandzura, The fast multipole method: A pedestrian prescriftith,

Antennas Propag. Soc. Mag5, 7 (1993).

E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, AIM: adaptive integral method for solving large-s

electromagnetic scattering and radiation probleRegio Sci31, 1225 (1996).

V. Rokhlin and M. A. Stalzer, Scalability of the fast multipole method for the Helmholtz equatiiglirth

SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis(SV¥AM, Philadelphia,

1997).

J. M. Song and W. C. Chew, Multilevel fast-multipole algorithm for solving combined field equations

electromagnetic scatterinylicrowave Opt. Technol. Lett0, 14 (1995).

S. D. Gedney, J. J. Ottusch, P. Petre, J. Visher, and S. Wandzura, Efficient high-order discretization scl

for integral equation methods, IEEE Symposium on Antennas and Propagation, Montreal, Canada, Ju

1997

J. N. Lyness and D. Jespersen, Moderate degree symmetric quadrature rules for the JriargjléViath.

Appl. 15, 19 (1975).

N. Morita, N. Kumagai, and J. R. Mautntegral Equation Methods for Electromagnetigstech, Boston,

1990).

D. Colton and R. Kres$ntegral Equation Methods in Scattering ThedWiley, New York, 1983).

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi (Edd8¢ctromagnetic and Acoustic Scattering by

Simple Shape@emisphere, New York, 1987).

L. Canino, L. Hamilton, J. J. Ottusch, R. Ross, J. Visher, and S. Wandzura, FastScat performance on E

benchmark cases, iRresentations of Electromagnetic Code Consortium Annual Meeting, Rome, NY, N

1996

User's Manual for FISC (Fast lllinois Solver CodéCenter for Computational Electromagnetics at the

University of lllinois and DEMACO, Inc., 1997).

V. Rokhlin, personal communication, 1997.

A. W. Maue, Toward formulation of a general diffraction problem via an integral equatiéthys 126, 601

(1949).

J.-H. Ma, V. Rokhlin, and S. Wandzura, Generalized Gaussian quadrature rules for systems of arb

functions,SIAM J. Numer. AnaB3, 971 (1996).

M. G. Duffy, Quadrature over a pyramid or cube of integrands with a singularity at a weriomer. Anal

19, 1260 (1982).



