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We show how to solve time-harmonic scattering problems by means of a high-
order Nyström discretization of the boundary integral equations of wave scattering
in 2D and 3D. The novel aspect of our new method is its use of local corrections to
the discretized kernel in the vicinity of the kernel singularity. Enhanced by local cor-
rections, the new algorithm has the simplicity and speed advantages of the traditional
Nyström method, but also enjoys the advantages of high-order convergence for con-
trolling solution error. We explain the practical details of implementing a scattering
code based on a high-order Nystr¨om discretization and demonstrate by numerical
example that a scattering code based on this algorithm can achieve high-order con-
vergence to the correct answer. We also demonstrate its performance advantages over
a high-order Galerkin code. c© 1998 Academic Press
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I. INTRODUCTION

High-order methods are numerical methods characterized by their ability to obtain extra
digits of precision with comparatively small additional effort. Scattering codes that employ
high-order methods have a distinct advantage over scattering codes that use low-order meth-
ods when it comes to computing results accurately. We demonstrated this advantage with
a Galerkin method of moments scattering code called FastScatTM [1, 2], which employs

1 This research was supported by the Defense Advanced Research Projects Agency of the U.S. Department of
Defense under Contract MDA972-95-C-0021 and by the Hughes Electronics Corporation.
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high-order methods in its geometry description, current basis functions, and quadratures. In
terms of memory efficiency, the advantage of using a high-order code such as FastScat was
clear. For a given number of unknowns, results obtained with FastScat were generally more
accurate than those obtainable by low-order codes, with the accuracy gap widening rapidly
as the number of unknowns applied to the problem was increased. In terms of CPU time effi-
ciency, however, the advantage of using a high-order code such as FastScat was not so clear.
The precomputation phase of the calculation often accounted for an undesirably large frac-
tion of the total solution time. Although we were able to significantly accelerate the part of the
precomputation phase devoted to computing near-interaction matrix elements by using high-
order regulated kernels [3], the overall matrix fill procedure was still considered too slow.

The precomputation phase of a Galerkin scattering calculation is time consuming because
it requires numerical evaluation of the convolution of the kernel with basis functions on every
pair of source and field patches. This amounts toN2 numerical double integrations over
patches, whereN is the number of unknowns. By contrast, when a point-based (Nystr¨om)
discretization is used, the impedance matrix fill step consists of nothing more than a kernel
evaluationto fill most matrix elements andO(N) single integrations and some low-rank
linear algebra to fill the others (specifically, the near interactions). As a result, use of a
point-based discretization dramatically reduces precomputation time.

Despite its simplicity and speed advantages, the Nystr¨om method has not been widely
used for discretizing the integral equations that arise in 2D and 3D scattering problems.
In fact, we know of only a few reported instances, of which [4, 5] are examples. The
problem is that the conventional Nystr¨om method [6] is designed to handle regular kernels,
whereas the Helmholtz kernel for wave scattering is singular wherever the source point
coincides with the field point. The standard way [6] to try to overcome this problem is to
use so-called “singularity extraction,” which, in practice, removes the infinity in the kernel
but not the singularities in the kernel’s derivatives. While singularity extraction avoids the
dilemma caused by numerical evaluation of the kernel at infinities, it does not generalize
easily to arbitrary surface patch geometries and it is a low-order method. In this paper, we
introduce “local corrections” as a means to overcome the problems associated with kernel
singularities. This enhanced Nystr¨om discretization method has all the advantages of the
standard Nystr¨om method combined with the high-order convergence capability required
to achieve error control.

This paper provides a detailed explanation for using the Nystr¨om method to solve scat-
tering problems in the 2D and 3D scalar cases and the 3D vector case (by which we mean
electromagnetic scattering based on the Maxwell equations), as well as numerical evidence,
demonstrating the method’s utility. The first section reviews the traditional Nystr¨om method
for discretizing integral equations and explains how it can be adapted to handle singular
kernels by incorporating local corrections. The second section discusses practical aspects of
implementing a high-order Nystr¨om code, such as appropriate surface models and meshes,
choice of testing functions for computing local corrections, and how to compute scattering
results. In the fourth section, we show numerical results for some 2D and 3D canonical
scatterers to demonstrate that our implementation of the Nystr¨om method achieves high-
order convergence to the correct answer. We also demonstrate the run-time performance
benefits of a using high-order Nystr¨om code, compared to high- and low-order Galerkin
codes, in this section. Finally, the Appendix describes how the local correction integrals for
2D scalar, 3D scalar, and 3D electromagnetic scattering can be formulated for efficient and
accurate numerical evaluation.
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II. NYSTR ÖM METHOD

A. Conventional Nystr̈om Method

The conventional Nystr¨om method is a simple and efficient mechanism for discretization
of integral equations with nonsingular kernels. Consider the integral equation

φ(x) =
∫

S
ds′G(x − x′)ψ(x′) (1)

and a quadrature rule for integrating a functionf (x) over the regionS

∫
S

ds f(x) ∼=
N∑

n=1

ωn f (xn). (2)

Such a quadrature rule will be provided by Gauss–Legendre or Gauss–Jacobi rules on a
parameterization ofS, so that the weightsωn will be the products of the elementary weights
wn with the Jacobian of the parameterization:

ωn =
√

g(un)wn, (3)

xn = x(un), (4)

whereun are the abscissae of the elementary rule,x(u) is the mapping function of the
surfaceS, andg(u) is the determinant of the mapping metric. The extension to patched
parameterizations is straightforward.

The Nyström discretization of a function onS is simply the tabulation of the function at
the quadrature pointsxn:

ψn = ψ(xn). (5)

To discretize integral Eq. (1), we simply form a matrix from the kernel:

φm =
N∑

n=1

ωnG(xm − xn)ψn. (6)

This discretization has an error of the same order as the underlying quadrature rule [7].
In other words, if the surfaceS is smooth,φ andG(x − x′) are regular functions, and if
a high-order quadrature rule is used, then the solution to Eq. (6) represents a high-order
approximation to the exact solution.

Unfortunately, the kernelsG(x − x′) for wave scattering are not regular. Instead, they
have singularities (or even hypersingularities) at short distances. With such kernels it is
often not even possible to make a matrix out of the kernel because its value is undefined
whenx = x′. Even if the kernel were finite at vanishing separation, a kernel singular in its
higher derivatives would spoil the high-order properties of the above prescription.

B. High-Order Nystr̈om Method for Singular Kernels

We have adapted the Nystr¨om method to handle singular kernels, without sacrificing high-
order convergence, by incorporating Strain’s method [8] for obtaining high-order quadrature
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rules for singular functions. The essence of the method is that by computing convolutions
of the kernel with a suitable set of testing functions, it is possible to determine how to adjust
the quadrature rule so that it is just as accurate near the singularity as far from it. The beauty
of the method is that these quadrature rule modifications are required only in the vicinity
of the singularity, hence the namelocal corrections.

Conceptually, local corrections may be viewed as adjustments to the quadrature weights
(at the original set of sample points) that are required to make the quadrature rule high-order
accurate when the (singular) functionG(x − x′) is included in the integrand. In practice,
since quadrature weights and discretized kernel terms always enter into the quadrature rule
as product pairs, one can equally well “locally correct” the discretized representation of
kernel and keep the original quadrature weights. This is the preferred approach because the
modified representation of the kernel has no infinities. We can write the “corrected” matrix
representation of the kernel as

G̃mn ≡
{

Lmn, whenxn ∈ Dm,

G(xm − xn), otherwise,
(7)

whereLmn is a (sparse) matrix of local corrections whose entries are nonzero only for source
pointsxn within a small domainDm centered on the field pointxm. For|xm − x′| sufficiently
large (i.e., outside the local correction domainDm), G(xm − x′) is a smoothly varying
function of position and the underlying quadrature rule provides a high-order approximation
to the desired integral. Close to the singularity, on the other hand, the singular nature of
the kernel spoils the high-order behavior of the underlying quadrature rule, and it becomes
necessary to use locally corrected values for the kernel instead ofG(xm − xn) in order to
achieve high-order convergence. The mechanism for computing the local corrections for
a given set of source points is explained below. The size of the local correction domain is
discussed in Section III.D.

The underlying quadrature rule is exact for integration of a certain class of functions
(typically polynomials). We choose the local corrections to make convolution of the singular
kernel with the same class of functions exact. They are obtained by solving the linear system

∑
n

ωnLmn f (k)(xm − xn) =
∫

Dm

ds′ G(xm − x′) f (k)(xm − x′), (8)

which representsK constraints (one for each testing functionf (k)) on J local correction
coefficients (one for each ofJ source points in the vicinity of themth field point). The
integral overDm can be obtained by oversampling the region of integration until the result
has converged to the desired accuracy. The nonzero components of themth row of the local
correction matrix are obtained by inverting the (small) system of equations above, either by
factorization (via LU decomposition) ifJ = K or by singular value decomposition (SVD) if
J 6= K . Computing local corrections is the most time consuming step of the precomputation
phase. Fortunately, it needs to be done only once at every sample point.

C. High-Order Nystr̈om Method Advantages

There are several reasons for using the Nystr¨om method to achieve a high-order dis-
cretization:
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• Faster precomputation. Unlike the Galerkin method, which requiresN2 numerical
double integrations to fill the impedance matrix, the Nystr¨om method requires less thanN2

kernel evaluations andO(N) calculations of local correction coefficients (each of which
involves a small number of adaptive integrations and a low-rank matrix inversion). An addi-
tional acceleration is possible when multiple solutions are desired at different frequencies.
This comes about because a frequency-dependent Helmholtz kernel can be written as the
product of a smoothly varying, frequency-dependent function and a frequency-independent
Laplace kernel. Once the local corrections for the Laplace kernel have been computed, they
can be used with minor modification at any frequency.

• Elimination of multipatch, parametric basis functions. Conventional method of mo-
ments scattering codes require basis functions with a certain level of continuity (in the
surface parameterization) across patch boundaries to facilitate differentiation. For example,
an important property of the popular RWG [9] basis functions for electromagnetic scat-
tering is that their normal components are continuous across patch boundaries. One can
also use high-order extensions to the RWG basis functions [10], although we have found
that implementing these basis functions in a scattering code can be both complicated and
inconvenient, especially for arbitrary, curved surfaces. Fortunately, for high-order codes
the requirement to use elemental sources with guaranteed continuity between patches dis-
appears because continuity of the source distribution is achieved as a natural consequence
of accurately solving the integral equation. (The reason this is so has to do with the fact
that the error caused by not enforcing continuity of the elemental sources is comparable
to the error of the underlying discretization. With a low-order discretization (e.g., RWG
basis functions on flat patches), continuity enforcement has a significant payoff because
the error in the underlying discretization is also significant. With a high-order discretiza-
tion, where the error due to the underlying discretization can more easily be made in-
significant, the situation is reversed. Thus, for high-order codes, whether Galerkin or
Nyström, the benefits of enforcing source continuity between patches do not outweigh the
inconveniences.)

• More amenable to fast solution algorithms. Implementation of a fast method that
requires segregation of the discretized scatterer into groups (such as the fast multipole
method (FMM) [11] or adaptive integral method (AIM) [12]) is simpler and more natural
with a point-based discretization. When a Galerkin implementation with overlapping basis
function domains is employed, the fast algorithm is either more complicated (because multi-
patch basis functions must be split apart) or less efficient (because the groups are larger).
A Galerkin implementation that uses high-order basis functions (even those confined to
single patches) cannot achieve optimum efficiency from the FMM because high-order basis
functions are used to their greatest advantage on patches larger than a wavelength, whereas
optimum use of the FMM favors groups smaller than a wavelength. In a Nystr¨om discretiza-
tion, the groups consist of individual sample points on the surface, so no such grouping
restrictions apply.

• Iterative solver memory reduction. With the Nyström method, the memory requirement
for an iterative solver using the full impedance matrix can be reduced fromO(N2) (storing
the full impedance matrix) toO(N) (storing only the sparse local correction matrix). This
is practical because reconstruction of the unsaved portions of the impedance matrix only
requires evaluations of the kernel, which are fast. If the FMM is used to represent the far
interactions, the storage requirement goes fromO(N5/4) in the single-stage case [13] to
O(N log(N)) in the multilevel case [14].
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• Symmetry exploitation. When basis functions are used, it is more complicated to re-
flect geometrical symmetries in the matrix representation. It may be necessary to explicitly
consider basis function transformation properties and to provide special treatment for some
variables (e.g., the coefficients of basis functions whose domains intersect reflection planes).
In the Nyström case, the representation of symmetries is much simpler.

III. PRACTICAL CONSIDERATIONS

A. Surface Description

Without a high-order surface description, a high-order Nystr¨om discretization is of little
benefit. For example, representing a curved surface by means of flat facets limits the rate of
solution convergence to low order whether or not the rest of the discretization method is high
order. Ideally, the internal representation of the surface exactly matches the physical surface.
Such a representation is possible for idealized curved shapes such as circles, ellipses, ogives,
etc. in 2D, and spheres, ellipsoids, etc. in 3D. For curved objects of more practical interest,
a high-order description of the physical surface may be given by high-order parametric
representations such as bicubic splines or NURBS (nonuniform rational B-splines). As
these are often the representations used by a CAD program to describe the object as it is
being designed and built, it is appropriate that we should also use them for electromagnetic
or acoustic modelling purposes.

Use of a high-order surface description is distinguished from that of a faceted description
in that the subdivision of the surface into patches is typically done once and refining the
discretization to improve accuracy is accomplished by increasing the order of the quadrature
rule (which increases the number of sample points per patch).

B. Meshing

The essence of a point-based discretization is the tabulation of functions at a set of points
lying on the surface. This need not have anything to do with subdividing a surface into
patches. Indeed, in the 2D case, patches can be done away with entirely on closed surfaces
(i.e., closed curves) parameterized by arc length, because the trapezoidal rule is a high-
order quadrature rule for periodic functions. In 3D, however, global parameterizations with
natural, high-order quadrature rules are much harder to come by, so subdivision of a surface
into patches, each of which comes with its own high-order quadrature rule, becomes a
practical necessity.

Since patches are introduced solely for the purpose of providing ready-made, high-order
quadrature rules on the surface, the job of meshing a surface is simpler and less restrictive.
Specifically, whereas a mesh designed for use with RWG-type basis functions is not allowed
to have a vertex in the middle of an edge, there is no such restriction on a mesh designed
for a point-based discretization. The only practical restrictions are that the mesh cover the
surface and that the patches not be so distorted or curved that the supposedly high-order
quadrature rules are not actually high order.

C. Testing Functions

The choice of testing functions goes together with the choice of quadrature rule. If the
quadrature rule is designed to efficiently integrate regular functions, the testing functions
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should be regular functions of increasing order. In locations where singular behavior of the
source function is expected, such as near geometric singularities (e.g., edges and corners),
it may be desirable to apply a different quadrature rule and use appropriately singular
testing functions [15]. For purposes of this discussion, we will assume the scattering surface
and the sources are smooth functions of position. Any departures from regularity can be
accommodated reasonably efficiently by tapering the size of the patches in the direction of
the singularity.

Testing functions may be global or local. Examples of global testing functions are mono-
mials in the surface parameteru in the 2D case, and powers ofx, y, andz in the 3D case. The
advantage of using global testing functions to compute local corrections on smooth surfaces
is that such testing functions are manifestly continuous across patch boundaries, just like
the sources. Sometimes enforcing continuity is a mistake, however, such as when the field
point and source patch are near each other but on separate, unconnected surfaces. Global
testing functions can also perform badly near geometric singularities such as a right-angle
bend. Local testing functions (i.e., testing functions confined to individual patches) do not
take full advantage of the guaranteed continuity of the sources on touching patches but are
the preferred choice because they are simpler to implement and more robust.

With local testing functions, the local corrections for a given field point can be computed
on a patch by patch basis. Thus, the number of points whose quadrature weights are being
corrected always equals the number of sample points on the patch. Doing this has the side
benefit of keeping down the size of the local correction linear systems that must be solved
when it becomes necessary to compute local corrections for points on several patches.

The number of local testing functions to use is still a free parameter. In 2D, where use of
a Gauss–Legendre rule of orderM allows exact integration of polynomials up to order 2M
(i.e., degree 2M − 1), it makes sense to use as many testing functions as there are points to
locally correct. In effect, the singular kernel and the unknown source function are both being
approximated to orderM , which means the order of approximation for the product is 2M .
This results in an exactly determined system of equations for computing local corrections.

In 3D, if a Gauss–Legendre product rule of orderMx My is used on quadrilateral patches,
the natural number of local testing functions to use is 4Mx My. This leads to an exactly
determined system. If the patches are triangles, one can use the quadrature rules of Lyness
and Jespersen [16] and their higher-order extensions. For these triangle rules, a natural
correspondence between the number of sample points and the maximum testing function
degree is less obvious. When the number of sample points and the number of testing
functions are not the same, they can at least be made close, in which case the nonsquare linear
system of equations for the local corrections can be solved by computing a pseudoinverse
using SVD. In our experience, local correction systems that are square or nearly square
perform best.

C.1. Two-dimensional scalar testing functions.Monomials of increasing degree in the
parameterization, i.e.,f (k)(u) = uk, are the simplest testing functions, but they can also be
troublesome when using high-order rules because they produce linear systems for computing
local corrections whose condition number grows exponentially with degree. The alternative
we favor is orthogonal polynomials such as Legendre or Lagrange polynomials. With either
of these polynomials as testing functions, it takes a little longer to compute the integral on
the right-hand side of Eq. (8), but the linear system is well conditioned for all polynomial
degrees. In addition, if the number of testing functionsK equals the number of source
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points whose quadrature weights are being correctedJ, then the system is orthogonal and
the matrix consisting of theK testing functions evaluated at theJ different source points
can be inverted simply by transposition.

C.2. Three-dimensional scalar testing functions.The trade-off between the simplicity
of monomials and the better conditioning behavior associated with orthogonal polynomials
exists also in the 3D cases. In 3D, however, our experience have been confined to testing
functions of a low enough degree that use of monomial functions generally does not pose
any serious trouble. On triangular patches, we use testing functions of the form

f (k)(u) = (u1)m(u2)n, (9)

whereu1 and u2 are the parameters of the surface description and the exponents obey
0≤ m, n ≤ M and 0≤ m+ n ≤ M for some maximum testing function degreeM .

C.3. Three-dimensional vector testing functions.In this case, vector testing functions
locally tangent to the surface are required; continuity of the testing functions between
adjacent patches is not. A natural set of basis vectors is given by the derivatives of the
surface with respect to the two surface parametersu1 andu2. We use testing functions of
the form

t(k)
ν (u) = ∂νx(u)√

g(u)
f (k)(u), (10)

whereν = 1, 2 and the scalar functionsf (k)(u) are the same as those used in the 3D scalar
case. This form for the testing functions has the property that the surface divergence of
t(k)
ν is

∇ · t(k)
ν (u) = ∂νx(u)√

g(u)
· (∇ f (k)(u)

) = ∂νx(u)√
g(u)

·
( ∑

αβ

gαβ∂α f (k)(u) ∂βx

)
(11)

since∂νx(u)/
√

g(u) is divergenceless (see Appendix C). This form for the divergence of
t(k)
ν (u) (which enters into the computation of local corrections for the hypersingular kernel)

has the especially desirable property that it avoids the need to compute second or higher
order derivatives of the surface.

D. Extent of Local Correction Domain

When local testing functions are used, the region over which local corrections should be
computed always includes the patch containing the field point, and it extends out to include
other patches until the underlying quadrature rule is accurate enough to replicate the exact
answer to within a desired tolerance. Since the testing functions have local support, the
problem of computing local corrections for a region containing several patches decouples
naturally into several smaller local correction problems, one for each patch. The tolerance
should be based on an estimate of the optimum accuracy that the particular discretization
could achieve; there is, after all, little to be gained by trying to evaluate the impedance
matrix more accurately than what is warranted by the discretization. The integrals on the
right-hand side of Eq. (8) can be computed by adaptive integration to comparable accuracy.
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E. Local Corrections for “Regular” Parts of the Kernel

In principle, it is unnecessary to compute local corrections for regular components of
the kernel because they will be efficiently integrated by a quadrature rule of sufficiently
high order. If such components are strongly peaked, however, the required order may be
so high that it is computationally more efficient to treat them as if they were singular
and compute local corrections for them. For example, the scalar kerneln̂′ · ∇′G(x, x′) in
2D or 3D is a strongly peaked function ofx′ when the field pointx is close to, but not
on, the source patch. This situation arises in the analysis of scattering from thin layers, for
example. One way to handle this problem is to put a fine discretization on each layer, in effect
subdividing the strongly peaked kernel function into small parts, each of which is relatively
smooth. This procedure is inefficient, however, because it uses many more sample points
than are warranted by the expected spatial structure of the source. A better approach would
be to discretize each layer densely enough to adequately represent the sources and compute
local corrections for the strongly peaked kernel. Computing such local corrections can be
a nontrivial task by itself, but one might expect that the extra time spent in precomputation
would be compensated by a less time-consuming solution phase.

F. Using the Results

F.1. Computing scattered fields.The amplitude of a scattered wave can be computed
by convolving the scattered wave with the source distribution. Even though a Nystr¨om
discretization specifies the source only at a finite set of points, these points are ideally
suited for evaluating integrals in a high-order fashion by virtue of Eq. (2). For example, the
amplitudeF(k) for 3D scalar scattering of a source distributionψ(x) on a surfaceS with
Neumann boundary conditions (i.e.,n̂ · ∇ψ(x) = 0 for x on S) into the plane wave given
by φ(x) = ei k·x is

F(k) = 1

4π

∮
S

ds(n̂ · ∇φ∗(x)) ψ(x) (12)

∼= 1

4π

∑
i

ωi (n̂(xi ) · ∇φ∗(xi )) ψ(xi ), (13)

where the sum is over all quadrature points and∗ indicates complex conjugation. The
extensions to other forms of scattering, whether near- or far-field, are straightforward.

F.2. Source interpolation. When a scattering problem is solved using a Galerkin scat-
tering code, it is obvious how to compute the value of the source distribution at any point
on the surface because the solved-for coefficients multiply basis functions that are uniquely
defined at every point on the surface. The Nystr¨om discretization, on the other hand, returns
values of the sources only at a finite set of discrete sample points, so that determining the
value of the source distribution at a point that is not part of this set requires interpolation.

When the scattering computation is performed using a second kind integral formulation,
one can use the original Nystr¨om interpolation formula, augmented by local corrections, to
interpolate the source distribution. As an example, if the magnetic field integral equation
(MFIE) is used to solve for the electric current distributionJ(x) induced on a perfectly
electrically conducting (PEC) scatterer by an incident magnetic fieldH inc(x), one can write
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the current at any pointx on the surfaceSas [17]

J(x) = 2n̂(x) ×
[
H inc(x) −

∮
S

ds′ ∇′G(x, x′) × J(x′)
]
. (14)

We obtain an interpolation formula from this continuous equation by using Eq. (2) to
approximate the integral, i.e.,

J(x) = 2n̂(x) ×
[

H inc(x) −
∑

i

ωi ∇′G(x, xi ) × J(xi )

]
, (15)

where the sum overi extends over all sample points onS. Of course, to make this a high-order
interpolation formula, it may be necessary to compute local corrections to the quadrature
rule at source points in the vicinity of the field pointx.

Another interpolating function, which does not require computing new local corrections
and is usable with first or second kind integral formulations, takes the form of a linear
combination of the functions that are integrated exactly by the underlying quadrature rule.
The coefficients may be determined by convolving the source with the projection operator

I (x, x′) =
∑
m,n

fm(x)(N−1)mn fn(x′), (16)

where the summation extends over all functionsfi (x) for which the quadrature rule is exact,
andN is a normalization matrix whose components are given by

Nmn =
∫

S
ds fm(x) fn(x). (17)

If the fi (x)’s are orthonormal overS, then N is simply the identity matrix. Convolution
with I (x, x′) eliminates the part of a function that is orthogonal to all thefi (x)’s. If we
evaluate the convolution ofI (x, x′) with the source function by means of the underlying
quadrature rule, we arrive at the following source interpolation functions(x), which only
requires knowledge of the source at the discrete set of sample pointss(xi ):

s(x) =
∑
m,n

fm(x)(N−1)mn

∑
i

ωi fn(xi ) s(xi ). (18)

The summation overi in the above equation extends over all sample points.

IV. RESULTS

This section is composed of two parts. The objective of the first part is to show that our
most recent version of FastScat, which uses a Nystr¨om discretization, achieves high-order
convergence to the correct answer for a few small, benchmark problems from 2D scalar and
3D vector scattering. In the second part, we benchmark the performance of this code against
two Galerkin codes, comparing them on the basis of CPU time and solution accuracy.
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A. Validation

The most common practice seen in the literature for demonstrating the validity of a scat-
tering code is to show that the results obtained from the code with aparticulardiscretization
compare favorably to a reference solution obtained from a series solution, another scattering
code, or measurements. Individual results such as this, while useful and necessary, say noth-
ing about the convergence properties of the algorithm on which the code is based. To show
how an algorithm converges, one must compute results with a sequence of increasingly fine
discretizations and observe whether and how the results converge to the correct answer.

This is especially important when validating a (purportedly) high-order code. One cannot
expect to enjoy the benefits of a high-order code (more accurate solutions, solution error
control, etc.) on large scattering problems without first verifying that the code achieves high-
order convergence on small scattering problems (where it is easier to generate solutions with
very small errors). The order of convergence of a numerical method relates to the rate at
which the error in the computed solution decreases as the discretization scale decreases.
For small enough discretization scalesh, the error in the solution computed by apth-order
method scales ashp. The results presented in this section will be shown to follow this
scaling law.

The benchmark problems include a circle and an ellipse in 2D, and a sphere and an
ellipsoid in 3D. In the 2D scalar scattering cases, results for both Dirichlet and Neumann
boundary conditions on the surface will be presented; in the 3D vector (electromagnetic)
scattering cases, it will be assumed that the surfaces are perfect conductors. The surface
boundary conditions are chosen mainly for simplicity; similar convergence behavior has
been shown for other types of boundary conditions (such as impedance boundary conditions
and dielectric interfaces) as well.

A.1. Two-dimensional scalar.We solved four different integral equations to obtain 2D
scalar scattering results. For Dirichlet boundary conditions (which correspond to the TM
polarization case of electromagnetic scattering from an object with cylindrical symmetry)
the first-kind integral equation is

φ inc(x) = −
∮

C
dl ′ G(x, x′) σ (x′), (19)

and the second-kind equation is

−n̂ · ∇φ inc(x) = 1

2
σ(x) +

∮
C

dl ′(n̂′ · ∇′G(x, x′)) σ (x′). (20)

In these equationsφ inc(x) is the incident scalar field,G(x, x′) is the 2D scalar kernel, and
n̂ andn̂′ are the unit normals to the contourC at the field and source points, respectively.
For this polarization case, the 2D scalar sourceσ is proportional to the z component of
the electric currentJ in the corresponding 3D vector problem, assumingz is the axis of
translational symmetry.

For Neumann boundary conditions (which correspond to the TE polarization case of
electromagnetic scattering) the first-kind integral equation is

n̂ · ∇φ inc(x) =
∮

C
dl ′(n̂ · ∇)(n̂′ · ∇′G(x, x′)) ψ(x′) (21)
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and the second-kind equation is

φ inc(x) = 1

2
ψ(x) −

∮
C

dl ′(n̂′ · ∇′G(x, x′)) ψ(x′). (22)

For this polarization case, the electric currentJ in the corresponding 3D vector problem,
assumingz is the axis of translational symmetry, is related to the 2D scalar sourceψ by

J = ψ n̂ × ẑ. (23)

A combined field equation can be obtained in either case by adding the first and second
kind equations together using an appropriate combination coefficient [18]. Although no
combined field equation results are reported here, it should be noted that use of a combined
field formulation is often recommended because, by being insensitive to internal resonances,
it can improve the condition number of the impedance matrix.

A.1.a. 1λ-radius circle. A circle is the ideal problem for benchmarking a high-order
scattering code because its surface is smooth and easy to define exactly, and its cross
section can be determined, for purposes of comparison, to arbitrary accuracy using the Mie
series [19]. We used FastScat to compute the bistatic cross section of a 1λ-radius circle
whose surface obeys either Dirichlet or Neumann boundary conditions, which correspond
to TM and TE polarizations, respectively. Meshing the circle consisted of dividing it into
circular segments of equal arc length. Nystr¨om sample points were distributed on each
patch (parameterized by arc length) according to a Gauss–Legendre integration rule of a
given order and Legendre polynomial testing functions up to half this order were used for
computing local corrections. The resultant local correction linear systems are square.

We performed a series of calculations with different discretizations (i.e., different numbers
of patches and different Nystr¨om quadrature orders) and compared the results to the Mie
series results (shown in Fig. 1). For a given Nystr¨om quadrature order (which we henceforth

FIG. 1. Bistatic cross section of a 1λ-radius circle for TM and TE polarizations computed by the Mie series.
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FIG. 2. Log–log plot of maximum relative error vs unknown density for 1λ-radius circle and TM polarization.
Each set of points is labeled by Nystr¨om order.

abbreviate to Nystr¨om order), as the size of the patches decreases, the difference between
the exact result and the FastScat calculation also decreases.

A more quantitative measure of convergence behavior is given in Fig. 2, where we have
plotted maximum relative error (defined as max[|σ(θ)/σref(θ) − 1|], whereσ(θ) andσref(θ)

are the calculated and exact cross sections, respectively, forθ = 0 to 180◦ in 1◦ increments)
versus the density of unknowns for a first-kind integral formulation of the TM polarization
case. The number of patches spanning the circle ranged from 4 to 2048 and the Nystr¨om order
ranged from 2 to 12. One of the important features to note is that, with enough unknowns,
the data fit a linear trend line whose slope increases as the Nystr¨om order increases. Since
the discretization scaleh is inversely proportional to the density of unknowns, a linear fit
on a log–log plot of error versus unknown density reflects the fact that the error scales
asymptotically ashp, wherep (the order of convergence) increases with Nystr¨om order.
Large values ofp signify a high-order algorithm. For the lower Nystr¨om orders, the slopes
of the lines connecting points of a given order are observed to be close to integers, namely
2 for order 2; 3 for order 4; and 5 for orders 6 and 8. The slopes for orders 10 and 12 are
still higher, although even at the highest sampling densities used, the discretization error
has not yet reached the asymptotic regime where each would be expected to have a slope
of 7.

The results for the second-kind integral formulation of the TM polarization case are
very similar. This should not be too surprising, since, despite the additional derivative, the
singularity of the kernel is no worse than log(r ).

The corresponding plot for the TE polarization case, also using a first-kind integral
formulation, is shown in Fig. 3. In the TE case, however, the first-kind integral equation
involves the 2D hypersingular kernel. The effect of using a more singular kernel is that the
source must be represented more accurately in order to achieve the same accuracy in the
cross section, or equivalently, that an equally well represented source (i.e., one employing
the same collection of unknowns) produces a less accurate value for the cross section. This
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FIG. 3. Log–log plot of maximum relative error vs unknown density for 1λ-radius circle and TE polarization.
Each set of points is labeled by Nystr¨om order.

is easily seen by comparing Figs. 2 and 3. For a given discretization, the calculated cross
section for the TE case is two or more orders of magnitude less accurate than that for
the TM polarization. Nonetheless, the TE polarization data also fit linear trend lines with
integer slopes when the discretization is fine enough. In order from lowest (2) to highest
(12) Nyström orders, the observed slopes are 2, 1, 3, 3, 5, and 5.

Cross section calculations resulting from the second-kind formulation of the TE polariza-
tion scattering problem are generally more accurate than those of the first-kind formulation.
In fact, as the Nystr¨om order increases, they become nearly as accurate as those for the TM
polarization case. Again, the reason is that the singularity of the kernel for the second-kind
TE case is no worse than log(r ), which is also the singularity of the kernels in the first and
second-kind TM polarization cases.

The process of improving a discretization by reducing the size of the patches is called
“h-refinement.” This is what has been exhibited in the previous two figures. Keeping the
number of patches fixed and increasing the number of parameters used to describe the
source distribution on each patch, on the other hand, is known as “p-refinement.” With a
high-order Nystr¨om code such as FastScat,p-refinement is accomplished by increasing the
Nyström order for a given meshing. In general, this is the preferred method for improving
a discretization for two reasons: one can avoid the usually tedious process of remeshing the
scatterer, and the accuracy of the answer usually improves faster this way. The data in the
next plot demonstrate this feature.

Figure 4 presents the TM and TE polarization data given in Figs. 2 and 3 in a different
way. The behavior of the calculation for each polarization underp-refinement is illustrated
by connecting points corresponding to a fixed number of patches instead of a fixed Nystr¨om
order. In some cases, data points corresponding to Nystr¨om orders higher than 12 have
been added. The fact that the data points on a semilog plot can be connected by nearly
straight lines indicates thatp-refinement can achieveexponentialconvergence, as opposed
to thegeometricconvergence that was observed forh-refinement. The convergence rate
gets higher the larger the patch size.
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FIG. 4. Semilog plot of maximum relative error vs unknown density for scattering from a 1λ-radius circle.
Points corresponding to different Nystr¨om quadrature orders for a fixed patch size are connected by lines (solid
for TM polarization anddashedfor TE polarization) and labeled by the number of patches.

With regard to numbers of unknowns, the most efficient way to achieve high accuracy
is to use a high-order method on large patches. For example, with only four patches and
a 30th-order quadrature rule, it was possible to achieve an accuracy of 10−6 for the TM
polarization case and 10−4 in the TE case. With this discretization, the unknown density is
about 10 unknowns/wavelength and the arc length of each patch is about 11

2 wavelengths.
For lower accuracies, the advantage of using large patches and high-order methods on the
circle is less clear. As a general rule, the optimum discretization is one that uses large
patches and high-order methods over smooth regions of the scatterer and smaller patches
over more highly curved regions.

A.1.b. 20λ × 2 λ ellipse. A 20 λ × 2 λ ellipse is a 2D scatterer that is less symmetric
than a circle, but is still smooth. It is a more challenging scattering problem than a 1λ-
radius circle for several reasons, not least of which is the fact that it extends much more
than a wavelength in at least one dimension. In addition, it is a good candidate problem for
applying the discretization rule described above.

In our code, the ellipse is described by the pair of parametric equations,

x = a cosu,

y = bsinu,
(24)

wherea = 10λ andb= 1 λ. A sensible patching, which puts the highest density of patches
in the most highly curved regions and vice versa for the flatter regions, is obtained if the
patches cover equal increments in the parameteru. The circumference of a 20λ × 2λ ellipse
is about 40.64λ.

We used FastScat to compute the monostatic cross section of a 20λ × 2 λ ellipse dis-
cretized using several different combinations of patch number and Nystr¨om order. The
boundary conditions on the surface were either Dirichlet or Neumann, corresponding to
TM and TE polarizations, respectively.
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FIG. 5. Monostatic cross section of a 20λ × 2 λ ellipse for TM and TE polarizations. One quadrant of
observation angles is shown; the others may be obtained by considering the fourfold symmetry of the scatterer.

We do not have at our disposal a series solution for the cross section of an ellipse (which we
might otherwise use to compute an arbitrarily accurate reference solution). However, we can
still estimate the accuracy of the computed solutions by comparing them to the most finely
discretized solution, which we designate the “reference solution.” We computed reference
solutions for the TM and TE polarization cases by meshing the ellipse into 128 patches and
putting a 20th-order Gauss-Legendre rule (i.e., 10 sample points) on each patch. We deduce
that these reference solutions are accurate to at least six decimal places, given the high-order
manner in which all the more coarsely discretized solutions are observed to converge to
them. Plots of the monostatic cross section versus incident angle for the reference solutions
are given in Fig. 5. As seen in the figure, the monostatic cross section for TM polarization
ranges from about 50λ looking at the broadside to less than 0.1λ looking at the tip. The
TE cross section is similar, although it is not as smooth a function of angle. In both cases,
the dynamic range of the cross section is more than 500.

The p-refinement behavior of the calculations on the ellipse using first-kind integral
equation formulations for both TM and TE polarization is shown in Fig. 6. Like the circle,
exponential convergence is observed and accurate solutions are most efficiently obtained
when the mesh consists of patches larger than a wavelength.

A.2. Three-dimensional vector.As in the 2D scalar case, first-kind and second-kind
integral formulations were explored. For 3D vector scattering off a PEC scatterer, the first-
kind formulation is the electric field integral equation (EFIE) [17]

Einc
tan(x) = i ω

∮
S

ds′
[
−G(x, x′) J(x′) + 1

k2
∇(∇′G(x, x′) · J(x′))

]
tan

, (25)

and the second-kind formulation is the magnetic field integral equation (MFIE)

H inc
tan(x) = −1

2
n̂ × J(x) +

∮
S

ds′[∇′G(x, x′) × J(x′)]tan, (26)
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FIG. 6. Semilog plot of maximum relative error vs unknown density for scattering from a 20λ × 2 λ ellipse.
Points corresponding to different Nystr¨om orders for a fixed patch size are connected by lines (solid for TM
polarization anddashedfor TE polarization) and labeled by the number of patches.

whereG(x, x′) ≡ exp(ik|x − x′|)/|x − x′| is the Helmholtz kernel in 3D,k = |k| =ω/c is
the radiation wavenumber,J refers to the electric surface current,Einc andH inc are the
incident electric and magnetic fields, and the subscripttan means that only the vector
components tangent to surface at the field point are being used.

The EFIE and MFIE can be summed to form a combined field integral equation (CFIE)
having some of the same desirable properties as the CFIE in the 2D scalar case. Although
no CFIE results are reported in this paper, the same techniques apply.

Note also, that, while the results presented here are restricted to PEC scatterers, it is trivial
to generalize the method to the more general scattering problem of homogeneous regions
with smooth boundaries.

A.2.a. One-fourthλ-radius sphere. Writing a code that correctly calculates 3D vector
scattering results is more difficult than writing a correct 2D scalar code. This is doubly true
if the code is designed to be high order. Therefore, it is particularly important to verify
that the output of a purportedly high-order 3D vector code actually converges to the correct
answer under bothh- and p-refinement and that it does so in a high-order fashion. In this
subsection, we present results demonstrating that our 3D vector Nystr¨om code achieves
high-order convergence to the correct answer on a sphere.

A sphere is the ideal surface to use for benchmarking a high-order 3D vector code for the
same reasons that a circle is ideal for a high-order 2D scalar code—it is uniformly smooth
and the accuracy of computed results can be determined by comparison to the Mie series
solution. Since the size of the surface, and therefore the number of unknowns, grows in
proportion tor 2 for a sphere, as opposed to justr for a circle, memory limitations prevented
us from pushing the unknown density on a 1λ-radius sphere to the same extremes as were
possible on a 1λ-radius circle. Nonetheless, when we did run FastScat on a 1λ-radius sphere
with a wide selection of discretizations, we found that the results converged to the correct
answer just as one would expect for a high-order scattering code. To reach the asymptotic
regime, where the convergence behavior is more obvious, however, we chose the radius
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TABLE I

3D Quadrature Rule and Testing Function Parameters

Maximum
Nyström Number testing Number

quadrature sample function testing
order points degree functions

2 1 0 1
3 3 1 3
5 6 2 6
7 12 3 10
8 15 4 15

of the sphere to be14 λ, which allows us to increase the unknown density fourfold before
running out of primary memory (for storing the full impedance matrix). For this reason
alone we present the data for the1

4 λ-radius sphere.
The internal surface representation of the sphere corresponds to an ideal sphere and

its surface is assumed to be perfectly conducting. The coarsest patching of the sphere
consists of 20 identical triangular patches, formed by mapping the triangles of an inscribed
icosahedron onto the surface of the sphere. Finer meshes were generated by dividing each
of the 20 triangles inton2 nearly identical subtriangles, wheren ranged from 2 up to 10. The
distribution of Nyström quadrature points on each patch was determined by a high-order
triangle rule [16]. The triangle rule orders that we used and corresponding numbers of
sample points are given in Table I. The number of testing functions (products of monomials
in the two surface parameters) and the maximum degree of the testing functions used with
each triangle rule are also listed in the table.

In all cases except Nystr¨om order 7, the number of sample points equals the number of
testing functions, resulting in an exactly-determined local correction linear system. In the
seventh-order case, the maximum testing function degree was chosen to make an under-
determined linear system.

Solutions for the bistatic cross section of the1
4 λ-radius sphere were computed with the

various discretizations and compared against the Mie series solution (shown in Fig. 7). For
a sphere this small, the cross sections for the two polarizations are similar (in terms of
smoothness and dynamic range), so we present the discretization refinement results only
for theθθ case. Cross polarization results are also not presented at all, although it may be
noted that such computed cross sections were extremely small (i.e., always less than the
co-polarized results by at least eight orders of magnitude).

The convergence behavior of the scattering results underh-refinement is shown in Fig. 8.
Refining the mesh for a given Nystr¨om order always improves the accuracy of the solution.
It is apparent for the lower Nystr¨om orders that the data approach linear trend lines with
integer slopes as the patches get smaller, just as they did in 2D. In the case of the EFIE,
the slopes of the trend lines for Nystr¨om orders 2 and 3 are both unity and in the case of
the MFIE, they are 2 and 3, respectively. For the higher orders, the slopes appear to be
increasing, but it is not as clear what their asymptotic values will be. For Nystr¨om order 5,
the last pair of points produce slopes close to 3 and 5 for the EFIE and MFIE solutions,
respectively. In all cases, the solution at a particular discretization obtained by using the
less singular kernel (i.e., the MFIE) is more accurate.
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FIG. 7. Bistatic cross section of a1
4
λ-radius PEC sphere forθθ andφφ polarizations computed by the Mie

series.

The behavior of the sphere results underp-refinement are shown in Fig. 9. The observed
p-refinement behavior is similar to that in the 2D scalar case. The fastest convergence is
usually achieved by applying a high-order quadrature to a coarse meshing. One notable
difference from the 2D scalar case is that the 3D vector calculation requires a higher density
of unknowns to achieve a comparable maximum relative error in the bistatic cross section.
The jaggedness of thep-refinement curves for the EFIE data may be explained by reference
to theh-refinement plot, which shows that the 2nd- and 3rd-order results have nearly the same
accuracy, and that the 7th-order results are actually less accurate than those for 5th-order.

FIG. 8. Log–log plot of maximum relative error vs unknown density for1
4
λ-radius PEC sphere inθθ po-

larization. Points obtained with different meshings but the same Nystr¨om order are connected by lines. A solid
(dashed) line indicates use of the EFIE (MFIE) integral formulation.
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FIG. 9. Semilog plot of maximum relative error vs unknown density for scattering from a1
4
λ-radius PEC

sphere. Points corresponding to different Nystr¨om quadrature orders for a fixed patch size are connected by lines
(solid for MFIE anddashedfor EFIE) and labeled by the number of patches.

For Nyström orders higher than about 8, problems related to ill-conditioning arise in the
EFIE formulation. Although the increasingly ill-conditioned nature of the local correction
linear system is a contributing factor, the more important contribution probably comes from
the fact that the EFIE is especially susceptible to conditioning problems when the Nystr¨om
sample points get too close together. Unfortunately, this is exactly what happens for the
higher-order triangle rules. As the order increases, the quadrature points tend to bunch up
near the edges and corners of the triangle. It may be possible to overcome this problem by
inventing different high-order triangle rules with better sample point spacing and by using
a better conditioned integral equation formulation such as the MFIE or CFIE (combined
field integral equation).

A.2.b. 2λ × 2 λ × 0.2 λ ellipsoid. As an example of a smooth, but less symmetric 3D
scatterer, we next consider a PEC ellipsoid with principal axis diameters 2λ, 2λ, and 0.2λ.
We computed the monostatic cross sections of this discus-shaped scatterer inθθ andφφ

polarizations using a MFIE formulation and an eighth-order quadrature rule, which put
15 points on each patch. Four different meshings, comprising 20, 80, 180, and 320 patches,
were tried. Each meshing was tailored to put smaller patches in the vicinity of ther = 1 λ

equator, where the one of the radii of curvature is small, and larger patches everywhere else,
where the surface is relatively flat. The number of unknowns distributed over the 6.47λ2

surface of the ellipsoid in the four cases ranged from 600 with the coarsest meshing to 9600
with the finest.

As we did with the ellipse in 2D, we can designate the solution computed with the
finest discretization to be the reference solution and obtain accuracy estimates of the other
solutions by comparing them to this reference solution. Figure 10 shows the reference
solutions for theθθ andφφ polarization cases.

Differences between the reference solution and the other, less finely discretized solutions
are shown in Fig. 11. As expected, the accuracy of the solution improves as one refines the
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FIG. 10. Reference solutions for the monostatic cross section of a 2λ × 2 λ × 0.2 λ PEC ellipsoid inθθ and
φφ polarizations. At 0◦ the observer is looking at the flattest part of the ellipsoid; at 90◦ he is looking edge on.

discretization. It should also come as no surprise that the solutions are also most accurate
near 0◦ and 180◦, where the cross section is highest. What is particularly notable about this
plot, however, is the fact that the error in the cross section decreases by orders of magnitude
when one reduces the (linear) size of each patch by factors of 2 or 3. Such large reductions in
the error are a direct consequence of our using an exact surface description and a high-order
rule (8th-order, in this case) on each patch.

FIG. 11. Semilog plot of the differences between cross sections computed using meshings consisting of 20,
80, and 180 patches, and a reference cross section computed using a meshing consisting of 320 patches. The
asymmetry of each curve reflects the fact that the meshings did not possess reflection symmetry.
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B. Run-Time Performance Comparisons

In this section we compare the run-time performance of our high-order Nystr¨om im-
plementation of FastScat to that of two method of moments scattering codes. The first
comparison code is an earlier, high-order Galerkin implementation of FastScat [20]. The
second is a low-order code (RWG basis and testing functions on flat facets) called FISC
[21]. We ran each code under comparable conditions to obtain solutions for the bistatic
cross section in theθθ polarization of three different size PEC spheres. The high-order
Nyström discretizations were constructed using an eighth-order quadrature rule (15 sample
points per patch) and fourth-degree testing functions for computing local corrections. The
high-order Galerkin discretizations were constructed from the same surface mesh using
patch-based, polynomial (in the parameterization) basis functions up to degree 4 to give
the same number of unknowns per patch, namely 30. The surface mesh used by FISC was
necessarily different from that used by both versions of FastScat because, with an RWG
discretization, one unknown is associated with each edge rather than multiple unknowns
being associated with each patch. Nonetheless, its surface meshes were constructed to main-
tain the density of unknowns at about 7.7 unknowns/wavelength, the same as for the both
FastScat discretizations. All computations were performed using a dense matrix fill, an
LUD solver, and a MFIE formulation.

Table II gives a summary of the results. The reported times are run times on a SPARC-10
workstation with 512 MB primary memory. The total run time is broken into setup time
(which includes the time spent setting up the problem and filling the impedance matrix) and
solve time (which includes the time spent performing the LUD and solving for the bistatic
cross section at 181 angles).

In comparing the results from the two high-order implementations of FastScat, two fea-
tures are especially noteworthy. The first is that the high-order Galerkin result is more
accurate by about a factor of 5 than the high-order Nystr¨om result. The second is that use
of the Nyström discretization can speed up the setup phase of the computation enormously,
with the speedup factor increasing as the number of unknowns increases. The observation
that the high-order Galerkin code computes results somewhat more accurately than the
Nyström code is consistent with our experience computing cross sections for other scatter-
ers, both in 2D and 3D. It is compensated, however, by the fact that the setup phase (and
to a lesser extent the solve phase) runs much faster using the Nystr¨om code. Furthermore,
the factor of 5 difference in accuracy is actually less significant in this case than it would

TABLE II

Nyström vs Galerkin Performance on PEC Spheres

Radius No. of Setup Solve RMS
Scattering code (λ) unknowns time (s) time (s) error (dB)

FastScat (Nystr¨om) 0.9 600 74 36 0.35
FastScat (Galerkin) 0.9 600 972 88 0.07
FISC (Galerkin) 0.9 600 83 42 1.28

FastScat (Nystr¨om) 1.8 2400 539 2742 0.26
FastScat (Galerkin) 1.8 2400 8177 3395 0.05
FISC (Galerkin) 1.8 2430 873 2255 0.61

FastScat (Nystr¨om) 2.7 5400 1953 31735 0.097
FastScat (Galerkin) 2.7 5400 38803 36152 0.021
FISC (Galerkin) 2.7 5880 8230 28795 0.723
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be if we were comparing low-order codes. Given theO(h9) convergence rate expected of
an eighth-order quadrature rule, it should be possible to recover the factor of 5 in accuracy
with furtherh-refinement by a modest 20%.

The high-order Nystr¨om code computes more accurate answers than the low-order
Galerkin code (FISC) in all cases. For the spheres considered here, this is largely due
to the fact that FISC uses a low-order surface representation. The high-order Nystr¨om code
also requires less setup time, an advantage that grows as the problems get bigger. Even a
comparison based on total solution time shows the high-order Nystr¨om implementation of
FastScat to be more efficient for computing accurate answers.

Finally, it is useful to note that an equivalent Nystr¨om discretization exists for every
method of moments discretization and vice versa [22], so it is possible, at least in principle,
to eliminate the observed accuracy discrepancy between the two versions of FastScat by
implementing a Nystr¨om code whose discretization error precisely matches that obtained by
the Galerkin code. We have not attempted to do this, but suspect that to do so would entail
additional complications and computations that would negate the substantial simplicity
and efficiency of the present implementation. On balance, we find the high-order Nystr¨om
method in its present form preferable to the high-order Galerkin method for solving integral
equations, especially when one adds in its other benefits such as reduced implementation
complexity and potential for significantly improved FMM performance.

V. SUMMARY

The standard Nystr¨om method is a simple and efficient mechanism for discretizing inte-
gral equations. We have shown how it can be adapted to provide a high-order discretization
of the boundary integral equations of wave scattering in 2D and 3D, which have singular
kernels. Numerical results obtained with a software implementation of this method show
that the algorithm can achieve high-order convergence to the correct answer for scattering
cross sections in 2D and 3D. We also demonstrated that a high-order Nystr¨om code consid-
erably reduces the CPU time cost of a scattering calculation by comparison to a high-order
Galerkin code, especially the precomputation time cost. The high-order Nystr¨om code also
outperformed a well-tuned, low-order Galerkin code (FISC) in terms of solution accuracy
and total run time. Demonstrations of how a high-order Nystr¨om code can be used in con-
junction with the FMM to reduce the memory and CPU time requirements of solving large
scattering problems will be the subject of a future publication.

APPENDIX

A. Local Corrections

Eleven different kernels arise in boundary integral equation formulations of 2D scalar,
3D scalar, and 3D electromagnetic scattering:

2D & 3D Scalar 3D Electromagnetic

G(r )
G(r )(t(x) · t′(x′))

n̂′ · ∇′G(r )
t(x) · (∇′G(r ) × t′(x′))

n̂ · ∇G(r )
(t(x) · ∇)(∇′G(r ) · t′(x′))

(n̂ · ∇)(n̂′ · ∇′G(r ))
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where

G(r ) ≡


i
4 H (1)

0 (kr) in 2D,

eikr

r in 3D,
(27)

r is the magnitude of the vectorr ≡ x′ − x from the field point atx to the source point
at x′; k is the wavenumber of the waves;n̂ and n̂′ are the unit normals to the surface at
the field and source points, respectively;∇ and∇′ are gradient operators for the field and
source coordinates, respectively; andH (1)

0 refers to the zeroth order Hankel function of the
first kind, defined byH (1)

0 (x) ≡ J0(x) + iY0(x), whereJn(x) andYn(x) representnth-order
Bessel functions of the first and second kinds, respectively.

For the 3D electromagnetic case, the source and excitation are surface tangent vectors so
it becomes necessary to compute local corrections for four scalar kernels, one for each of the
four combinations of (two) independent surface tangent vectors at the field point and (two)
independent surface tangent vectors at the source point. These surface tangent vectors at
the field and source points, represented byt(x) andt′(x′), respectively, are included as part
of the 3D electromagnetic kernel in recognition of this fact and for clarity of presentation.

In this section, we show how to compute local corrections for each of these kernels. We
will make use of the vector calculus identity [23]

(n̂ · ∇)(n̂′ · ∇′g(r )) = (n̂ · n̂′)(∇ · ∇′g(r )) − (n̂ × ∇) · (n̂′ × ∇′g(r )) (28)

= (n̂ · n̂′) k2g(r ) − (n̂ × ∇) · (n̂′ × ∇′g(r )), (29)

where the second line follows ifg(r ) obeys the homogeneous Helmholtz equation

(∇2 + k2)g(r ) = 0. (30)

This identity allows one to convert between double normal derivative and double tangential
derivative operators on the Green function.

A.1. Two-dimensional scalar.
A.1.a.G(r ),

G(r ) = i

4
H (1)

0 (kr) = i

4
J0(kr)︸ ︷︷ ︸
regular

− 1

4
Y0(kr)︸ ︷︷ ︸
singular

. (31)

This kernel may be written as the sum of a regular part and a singular part. It is necessary
to compute local corrections only for the singular part because the regular part will be
efficiently integrated by the underlying high-order quadrature rule. The functionY0(kr)
contains a log(r ) singularity. Therefore, one can use “lin–log” quadrature rules [24] to
efficiently compute local correction integrals when the region of integration contains the
field point, and Gauss–Legendre rules otherwise.

A.1.b. n̂′ · ∇′G(r ),

n̂′ · ∇′G(r ) = n̂′ · r
r

d

dr
G(r ) = − i

4
k2

regular︷ ︸︸ ︷
(n̂′ · r)

regular︷ ︸︸ ︷
J1(kr)

kr︸ ︷︷ ︸
regular

+ 1

4

regular︷ ︸︸ ︷
n̂′ · r
r 2

singular︷ ︸︸ ︷
krY1(kr)︸ ︷︷ ︸

singular

. (32)
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The first term is regular; the second is singular. The second term is singular not because
its value diverges at the origin (in fact, limr →0(n̂′ · r/r 2)krY1(kr) = 1/π R, whereR is the
radius of curvature of the surface at the field point), but because its higher derivatives do.
The singularity is still a log(r ) singularity, so local correction integrals can be computed in
the same manner as for the previous kernel.

A.1.c. n̂ · ∇G(r ),

n̂ · ∇G(r ) = − n̂ · r
r

d

dr
G(r ) = i

4
k2

regular︷ ︸︸ ︷
(n̂ · r)

regular︷ ︸︸ ︷
J1(kr)

kr︸ ︷︷ ︸
regular

− 1

4

regular︷︸︸︷
n̂ · r
r 2

singular︷ ︸︸ ︷
krY1(kr)︸ ︷︷ ︸

singular

. (33)

This kernel is identical to that for̂n′ · ∇′G(r ) with n̂′ replaced by−n̂ and it has similar
properties.

A.1.d. (n̂ · ∇)(n̂′ · ∇′G(r )),

(n̂ · ∇)(n̂′ · ∇′G(r ))

= (n̂ · r)(n̂′ · r)
r 2

(
1

r

dG(r )

dr
− d2G(r )

dr2

)
− (n̂ · n̂′)

r

dG(r )

dr
(34)

= ik2

4


regular︷ ︸︸ ︷

(n̂ · n̂′)

regular︷ ︸︸ ︷
J1(kr)

kr
−

regular︷ ︸︸ ︷
(n̂ · r)(n̂′ · r)

r 2

regular︷ ︸︸ ︷
J2(kr)


︸ ︷︷ ︸

regular

+ (n̂ · ∇)(n̂′ · ∇′GR(r ))︸ ︷︷ ︸
hypersingular

. (35)

Applying the derivatives to the real part ofG(r ), namelyGR(r ) ≡ − 1
4Y0(kr), produces a

term that is not merely singular but hypersingular. When convolved with a regular function,
this term is not (in general) integrable because it diverges like 1/r 2, relative to the field point.
The following discussion shows how to manipulate it into a form that allows numerical
evaluation when the region of integration contains the field point. When the region of
integration does not include the field point, Gauss–Legendre rules may be used.

The convolution of(n̂ · ∇)(n̂′ · ∇′GR(r )) with testing functionf (x′) is∫
C

dl ′(n̂ · ∇)(n̂′ · ∇′GR(r )) f (x′). (36)

Strictly speaking this is not a proper integral unless it is assumed to represent the limiting
value as the field point approaches the surface from off the surface. We implicitly make
this assumption throughout. Using the vector identity (29) and the fact thatGR(r ) obeys
the homogenous Helmholtz equation whenx is not onS, we can convert the double normal
derivative operator to a double tangential derivative operator:∫

C
dl ′[k2(n̂ · n̂′)GR(r ) − (n̂ × ∇) · (n̂′ × ∇′GR(r ))] f (x′). (37)
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In 2D, we can rewrite the second term even more explicitly in terms of tangential derivatives,
obtaining ∫

C
dl ′[k2(n̂ · n̂′)GR(r ) − (t̂ · ∇) (t̂′ · ∇′GR(r ))] f (x′), (38)

wheret̂ andt̂′ are unit tangent vectors at the field and source points, respectively. The first
term has a log(r ) singularity, which we already know how to integrate numerically; the
second term is hypersingular and requires further manipulation.

The gradient operators∇ and∇′ commute with the unit tangent vectorst̂′ andt̂, respec-
tively, so we can rearrange the factors of the second term and integrate it by parts as

−
∫

C
dl ′(t̂ · ∇)(t̂′ · ∇′GR(r )) f (x′)

= −
∫

C
dl ′ f (x′) t̂′ · ∇′(t̂ · ∇GR(r )) (39)

= −
∫

C
dl ′ t̂′ · ∇′( f (x′)(t̂ · ∇GR(r )))

+
∫

C
dl ′(t̂′ · ∇′ f (x′))(t̂ · ∇GR(r )). (40)

The first integral on the right-hand side of (40) is

−
∫

C
dl ′ t̂′ · ∇′( f (x′)(t̂ · ∇GR(r )))

= −
∫

C
dl′ · ∇′( f (x′)(t̂ · ∇GR(r ))) (41)

= −[ f (x′)(t̂ · ∇GR(r ))]C2
C1

; (42)

i.e., since the integrand is a total derivative, the value of the integral is a difference of values
at the endpoints. Rearranging factors and using

∇GR(r ) = −∇′GR(r ), (43)

we can rewrite the second integral as

−
∫

C
dl ′ ∇′GR(r ) · [ t̂ (t̂′ · ∇′ f (x′))]. (44)

In this form, the integral is not yet evaluable because∇′GR(r ) diverges like 1/r relative to
the field point. We can make it integrable by adding and subtracting a smooth function that
matches the integrand at the field point. Specifically, let us write (44) as

−
∫

C
dl ′ ∇′GR(r ) · [ t̂ (t̂′ · ∇′ f (x′)) − t̂′(t̂ · ∇′ f (x))] −

∫
C

dl ′ ∇′GR(r ) · [ t̂′(t̂ · ∇′ f (x))],

(45)
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wherêt′ · ∇′ f (x′)andt̂ · ∇′ f (x) represent tangential derivatives of the testing functionf (x′)
evaluated at the field and source points, respectively. The first integral in this expression is
integrable because the zero of

[ t̂ (t̂′ · ∇′ f (x′)) − t̂′(t̂ · ∇′ f (x))] (46)

at the field point cancels the pole from∇′GR(r ) at the field point, leaving a singularity no
worse than log(r ) relative to the field point. By rearranging factors, the integrand of the
second integral can be shown to be a total derivative, so that

−
∫

C
dl ′ ∇′GR(r ) · [ t̂′(t̂ · ∇′ f (x))]

= −
∫

C
dl ′ t̂′ · (∇′GR(r )(t̂ · ∇′ f (x))) (47)

= −[GR(r )(t̂ · ∇′ f (x))]C2
C1

. (48)

Putting the various terms together, we arrive at the following numerically tractable expres-
sion for the integral needed to compute local corrections for the hypersingular component
of the kernel∫

C
dl ′{k2(n̂ · n̂′)GR(r ) f (x′) − ∇′GR(r ) · [ t̂ (t̂′ · ∇′ f (x′)) − t̂′(t̂ · ∇′ f (x))]}

− [ f (x′)(t̂ · ∇GR(r )) + GR(r )(t̂ · ∇′ f (x))]C2
C1

, (49)

or, substituting forGR(r ),

−k2

4

∫
C

dl ′
{

(n̂ · n̂′)Y0(kr) f (x′) + Y1(kr)

kr
r̂ ·

[
t̂
d f

dl ′
(x′) − t̂′

d f

dl ′
(x)

]}

− 1

4

[
k2 Y1(kr)

kr
(t̂ · r̂) f (x′) − Y0(kr)

d f

dl ′
(x)

]C2

C1

. (50)

A.2. Three-dimensional scalar.
A.2.a.G(r ),

G(r ) = eikr

r
= i

sin(kr)

r︸ ︷︷ ︸
regular

+ cos(kr)

r︸ ︷︷ ︸
singular

. (51)

As in the 2D scalar case, this kernel may be written as the sum of a regular part and a singular
part. It is necessary to compute local corrections only for the singular part because the
regular part will be efficiently integrated by the underlying high-order quadrature rule.
The singular term contains a 1/r singularity. Computing local corrections for the singular
part requires evaluation of integrals of cos(kr)/r times polynomials in the parameters
u = (u1, u2) used to describe the surface. When the region of integration contains the field
point, it may be subdivided into triangles with the field point at one vertex, and the integration
may be performed by using the Duffy transformation [25] and Gauss–Legendre product
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rules on the subtriangles. Otherwise, one can apply efficient quadrature rules for smooth
functions such as high-order triangle rules [16].

A.2.b. n̂′ · ∇′G(r ),

n̂′ · ∇′G(r ) = n̂′ · r
r

d

dr
G(r ) = (ikr − 1) eikr

r 2

n̂′ · r
r

(52)

= ik3

regular︷ ︸︸ ︷(
cos(kr) − sin(kr)

kr

)
(kr)2

regular︷ ︸︸ ︷
(n̂′ · r)︸ ︷︷ ︸

regular

−
regular︷ ︸︸ ︷

(cos(kr) + (kr) sin(kr))

singular︷ ︸︸ ︷
(n̂′ · r)

r 2

1

r︸ ︷︷ ︸
singular

. (53)

In 2D, (n̂′ · r)/r 2 is a regular function with a removable singularity at the origin. In 3D, the
singularity is removable only if the principal radii of curvature of the surface at the field
point are the same. Otherwise its limiting value depends on the direction from which the
origin is approached. Nonetheless, local correction integrals can be computed efficiently by
means of triangle subdivision and the Duffy transformation.

A.2.c. n̂ · ∇G(r ),

n̂ · ∇G(r ) = −ik3

regular︷ ︸︸ ︷(
cos(kr) − sin(kr)

kr

)
(kr)2

regular︷ ︸︸ ︷
(n̂ · r)︸ ︷︷ ︸

regular

+
regular︷ ︸︸ ︷

(cos(kr) + (kr) sin(kr))

singular︷ ︸︸ ︷
(n̂ · r)

r 2

1

r︸ ︷︷ ︸
singular

. (54)

This kernel is identical to that for̂n′ · ∇′G(r ) with n̂′ replaced by−n̂ and has similar
properties.

A.2.d.(n̂ · ∇)(n̂′ · ∇′G(r )),

(n̂ · ∇)(n̂′ · ∇′G(r ))

= (n̂ · n̂′)
(

1 − ikr

r 3

)
eikr + (n̂ · r)(n̂′ · r)

(
k2r 2 + 3ikr − 3

r 5

)
eikr (55)

= ik3


regular︷ ︸︸ ︷( sin(kr)

kr − cos(kr)
)

(kr)2

regular︷ ︸︸ ︷
(n̂ · n̂′) + k2

regular︷ ︸︸ ︷
sin(kr)

kr − 3
( sin(kr)

kr − cos(kr)
(kr)2

)
(kr)2

regular︷ ︸︸ ︷
(n̂ · r)(n̂′ · r)


︸ ︷︷ ︸

regular

+ (n̂ · ∇)(n̂′ · ∇′GR(r ))︸ ︷︷ ︸
hypersingular

. (56)

Applying the derivatives to the real part ofG(r ), namelyGR(r ) ≡ cos(kr)/r , produces a
term that is not merely singular but hypersingular. When convolved with a regular function,
this term is not (in general) integrable because it diverges like 1/r 3 relative to the field point.
The following discussion shows how to manipulate it into a form that allows numerical
evaluation when the region of integration contains the field point. When the region of
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integration does not include the field point, standard, high-order rules for integrating regular,
two-parameter functions may be used.

The convolution of(n̂ · ∇)(n̂′ · ∇′GR(r )) with testing functionf (x′) is∫
S

ds′(n̂ · ∇)(n̂′ · ∇′GR(x, x′)) f (x′) (57)

or ∫
S

ds′[k2(n̂ · n̂′)GR(x, x′) − (n̂ × ∇) · (n̂′ × ∇′GR(x, x′))] f (x′), (58)

where the second form follows from Eq. (29). As in the 2D case, we implicitly assume a
limiting procedure whereby the field point approaches its final destination on the surface
from off the surface. The first term in brackets is only singular like 1/r ; we already know
how to deal with such expressions. It is the second term that requires further attention.
Write this term in component form using the Levi–Civita tensorεi jk and manipulate the
expression as shown using the fact thatx andx′ are independent. Summation over repeated
indices is implied.

−
∫

S
ds′((n̂ × ∇) · (n̂′ × ∇′GR(x, x′))) f (x′)

= −(n̂ × ∇) ·
∫

S
ds′(n̂′ × ∇′GR(x, x′)) f (x′) (59)

= −εi jk n j ∂k

[∫
S

ds′(n̂′ × ∇′GR(x, x′)) f (x′)
]

i

(60)

= −εi jk n j

[∫
S

ds′(n̂′ × ∇′(∂kGR(x, x′)
))

f (x′)
]

i

(61)

= −εi jk n j

[∫
S

ds′ n̂′ × ∇′( f (x′)∂kGR(x, x′)
)]

i

+ εi jk n j

[∫
S

ds′ ∂kGR(x, x′)(n̂′ × ∇′ f (x′))
]

i

(62)

The last step shows the result of integrating by parts. Letting

ψ = f (x′)∂kGR(x, x′), (63)

we apply an adjunct to Stokes’s theorem,∫
S

ds(n̂ × ∇ψ) =
∮

∂S
dlψ (64)

to the part of the first term inside the brackets, to get

−εi jk n j

[∫
S

ds′ n̂′ × ∇′( f (x′)∂kGR(x, x′)
)]

i

= −εi jk n j

[∮
∂S

dl′ f (x′)∂kGR(x, x′)
]

i

(65)
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= −εi jk n j

∮
∂S

dl ′i f (x′)∂kGR(x, x′) (66)

= −
∮

∂S
dl′ · (n̂ × ∇GR(x, x′)) f (x′), (67)

which is integrable. To evaluate the rest, use the fact that

∇GR(x, x′) = −∇′GR(x, x′) (68)

to write

εi jk n j

[∫
S

ds′ ∂kGR(x, x′)(n̂′ × ∇′ f (x′))
]

i

= −
∫

S
ds′ ∂ ′

kGR(x, x′)εki j (n̂′ × ∇′ f (x′))i n j (69)

= −
∫

S
ds′ ∇′GR(x, x′) · [(n̂′ × ∇′ f (x′)) × n̂]. (70)

At the field point, the vector in brackets becomes

(n̂ × ∇′ f (x′)) × n̂ = −n̂ × (n̂ × ∇′ f (x′)) = ∇′
‖ f (x′). (71)

Some notation from differential geometry is useful at this point:∂µx ≡ ∂x/∂uµ is the
derivative of the surface with respect to surface parameteruµ; gµν is the metric tensor given
by ∂µx · ∂νx; gµν is the inverse ofgµν; g is the determinant ofgµν ; and∂ ′

µ f represents the
derivative of f with respect touµ, i.e.,∂ ′

µ f ≡ ∂ f (x′(u))/∂uµ.
Thus, in the language of differential geometry, the vector in brackets becomes

∂ ′µ f ∂ ′
µx′ = gµν∂ ′

ν f ∂ ′
µx′ = αµ∂ ′

µx′
√

g(u)
(72)

whenαµ is defined as √
g(u)gµν∂ ′

ν f (73)

evaluated at the field point. Therefore, we may write

−
∫

S
ds′ ∇′GR(x, x′) · [(n̂′ × ∇′ f (x′)) × n̂]

=
∫

S
ds′ ∇′GR(x, x′) ·

[
n̂ × (n̂′ × ∇′ f (x′)) + αµ∂ ′

µx′
√

g(u)

]
−

∫
S

ds′ ∇′GR(x, x′) ·
[
αµ∂ ′

µx′
√

g(u)

]
. (74)

The first term is integrable because the zero of[
n̂ × (n̂′ × ∇′ f (x′)) + αµ∂ ′

µx′
√

g(u)

]
(75)
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at the field point cancels one of the two poles from∇′GR(x, x′) at the field point. The other
term may be rewritten as

−
∫

S
ds′ ∇′GR(x, x′) ·

[
αµ∂ ′

µx′
√

g(u)

]

= −
∫

S
ds′ ∇′

‖GR(x, x′) ·
[
αµ∂ ′

µx′
√

g(u)

]
(76)

= −
∫

S
ds′ ∇′

‖ ·
(

GR(x, x′)
αµ∂ ′

µx′
√

g(u)

)

+ αµ

∫
S

ds′ GR(x, x′)∇′
‖ ·

[
∂ ′
µx′

√
g(u)

]
, (77)

where the last step shows the result of integrating by parts. The part of the first term in
parentheses has no normal component so it can be converted to a boundary integral using
the divergence theorem for open surfaces (see Appendix B):

−
∫

S
ds′ ∇′

‖ ·
(

GR(x, x′)
αµ∂ ′

µx′
√

g(u)

)
= −

∮
∂S

(dl′ × n̂′) ·
(

GR(x, x′)
αµ∂ ′

µx′
√

g(u)

)
(78)

= −
∮

∂S
dl′ · [

n̂′ × (
αµ∂ ′

µx′)]GR(x, x′)√
g(u)

. (79)

The second term is zero since (see Appendix C)

∇′
‖ ·

[
∂ ′
µx′

√
g(u)

]
= 0. (80)

Putting the various terms together, we arrive at the numerically tractable expression for
the integral needed to compute local corrections for the hypersingular component of the
kernel,∫

S
ds′

(
k2(n̂ · n̂′)GR(x, x′) f (x′) + ∇′GR(x, x′) ·

[
n̂ × (n̂′ × ∇′ f (x′)) + αµ∂ ′

µx′
√

g(u)

])
−

∮
∂S

dl′ ·
(

(n̂ × ∇GR(x, x′)) f (x′) + (
n̂′ × (

αµ∂ ′
µx′))GR(x, x′)√

g(u)

)
, (81)

where

αµ ≡
√

g(u)gµν∂ ′
ν f (x′(u)), (82)

evaluated at the field point. The first integral is a surface integral whose integrand diverges
no worse than 1/r near the field point; the second is a boundary integral of a regular function
(so long as the field point is never situated on the boundary).
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A.3. Three-dimensional vector.
A.3.a.G(r )(t(x) · t′(x′)).
This kernel is identical toG(r ) in the 3D scalar case, except that the regular function

with which it must be convolved is the inner product of a tangent vectort(x) at the field
point and a tangent vectort′(x′) at the source point. Four sets of local corrections must be
computed for each field point since there are two independent tangent vectors at each field
point and two at each source point.

A.3.b. t(x) · (∇′G(r ) × t′(x′)),

t · (∇′G(r ) × t′(x′))

= (ikr − 1) eikr (t′(x′) × t(x)) · r
r 2

1

r
(83)

= ik3

regular︷ ︸︸ ︷( sin(kr)
kr − cos(kr)

)
(kr)2

regular︷ ︸︸ ︷
((t(x) × t′(x′)) · r)︸ ︷︷ ︸

regular

+
regular︷ ︸︸ ︷

(cos(kr) + (kr) sin(kr))

singular︷ ︸︸ ︷
((t(x) × t′(x′)) · r)

r 2

1

r︸ ︷︷ ︸
singular

. (84)

The analysis of the singular component is as follows. We can writet(x) in terms of surface
derivatives at the field point

t(x) = ζµ∂µx (85)

with some pair of coefficientsζµ, µ= 1, 2. Lettingu′ denote the parameterization of the
source point relative to the field point, we can write the expansions fort′(x′) andr(x′) about
the field point,

t′(x′) = ξρ∂ ′
ρx′ = ξρ

(
∂ρx + ∂ρ∂σ x u′σ + · · · ), (86)

for some other pair of coefficientsξρ with ρ = 1, 2 and

r(x′) = ∂τ x u′τ + · · · . (87)

Then

((t(x) × t′(x′)) · r) = ζµξρ
(
∂µx × ∂ρx + ∂µx × ∂ρ∂σ x u′σ + · · · ) · (

∂τ x u′τ + · · · ) (88)

= ζµξρ((∂µx × ∂ρ∂σ x) · ∂τ x)u′σ u′τ + · · · . (89)

Since the leading term in 1/r 2 is also second order inu′, the ratio((t(x) × t′(x′)) · r)/r 2 does
not diverge in the limit asr → 0. However, like the factors(n̂′ · r)/r 2 and(n̂ · r)/r 2 from the
3D scalar case, this ratio is not a regular function unless the principal radii of curvature at
the field point are identical. Computation of local correction integrals for each combination
of tangent vectors at the field and source points proceeds as in the corresponding 3D scalar
case.
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A.3.c. (t(x) · ∇)(∇′G(r ) · t′(x′)),

(t(x) · ∇)(∇′G(r ) · t′(x′))

= (t · t′)
(

1− ikr

r 3

)
eikr + (t · r)(t′ · r)

(
k2r 2 + 3ikr − 3

r 5

)
eikr (90)

= ik3


regular︷ ︸︸ ︷( sin(kr)

kr − cos(kr)
)

(kr)2

regular︷ ︸︸ ︷
(t · t′) + k2

regular︷ ︸︸ ︷
sin(kr)

kr − 3
( sin(kr)

kr − cos(kr)
(kr)2

)
(kr)2

regular︷ ︸︸ ︷
(t · r)(t′ · r)


︸ ︷︷ ︸

regular

+ (t · ∇)(∇′GR(r ) · t′)︸ ︷︷ ︸
hypersingular

. (91)

The result is very similar to that in the 3D scalar case. The real part ofG(r ), namely
GR(r ) ≡ cos(kr)/r , produces a hypersingular term that is not (in general) integrable be-
cause it diverges like 1/r 3 relative to the field point. We now show how to manipulate it
into a form that can be evaluated numerically when the region of integration contains the
field point.

Reformulating the integral of the hypersingular term begins with an integration by parts:∫
S

ds′(t(x) · ∇)(∇′GR(x, x′) · t′(x′))

=
∫

S
ds′ t′(x′) · ∇′

‖(t(x) · ∇GR(x, x′)) (92)

=
∫

S
ds′ ∇′

‖ · [t′(x′)(t(x) · ∇GR(x, x′))]

−
∫

S
ds′(t(x) · ∇GR(x, x′))(∇′

‖ · t′(x′)). (93)

The first term on the last line can be converted to a boundary integral using the divergence
theorem for open surfaces (see Appendix B) and the fact that the argument of∇′

‖· is tan-
gential to the surface:∫

S
ds′ ∇′

‖ · [t′(x′)(t(x) · ∇GR(x, x′))] =
∮

∂S
dl(ê′ · t′(x′))(t(x) · ∇GR(x, x′)). (94)

The second term is

−
∫

S
ds′(t(x) · ∇GR(x, x′))(∇′

‖ · t′(x′)) =
∫

S
ds′ ∇′GR(x, x′) · [t(x)(∇′

‖ · t′(x′))]. (95)

Write this as∫
S

ds′ ∇′GR(x, x′) ·
[
t(x)(∇′

‖ · t′(x′)) − αµ∂ ′
µx′

√
g(u)

]
+

∫
S

ds′ ∇′GR(x, x′) ·
[
αµ∂ ′

µx′
√

g(u)

]
, (96)
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where the constantαµ is chosen to maket(x)(∇′
‖ · t′(x′)) andαµ∂ ′

µx′/
√

g(u) equal at the
field point. In other words,αµ is defined as√

g(u)gµν(t(x) · ∂ ′
νx′)(∇′

‖ · t′(x′)) (97)

evaluated at the field point. The first term is integrable because the zero of[
t(x)(∇′

‖ · t′(x′)) − αµ∂ ′
µx′

√
g(u)

]
(98)

at the field point cancels one of the two poles from∇′GR(x, x′) at the field point. As shown
in the 3D scalar case, the second term reduces to the boundary integral:∫

S
ds′ ∇′GR(x, x′) ·

[
αµ∂ ′

µx′
√

g(u)

]
=

∮
∂S

dl′ · [
n̂′ × (

αµ∂ ′
µx′)]GR(x, x′)√

g(u)
(99)

=
∮

∂S
dl ′ ê′ ·

(
GR(x, x′)

αµ∂ ′
µx′

√
g(u)

)
. (100)

Putting the various terms together, we arrive at the numerically tractable expression for
the integral needed to compute local corrections for the hypersingular component of the
kernel, ∫

S
ds′ ∇′GR(x, x′) ·

[
t(x)(∇′

‖ · t′(x′)) − αµ∂ ′
µx′

√
g(u)

]
+

∮
∂S

dl ′ ê′ ·
(

(t(x) · ∇GR(x, x′))t′(x′) + GR(x, x′)
αµ∂ ′

µx′
√

g(u)

)
, (101)

where

αµ ≡
√

g(u)gµν(t(x) · ∂ ′
νx′)(∇′

‖ · t′(x′)) =
√

g(u)gµν(t(x) · ∂ ′
νx′)

(
gρσ ∂ ′

ρ t′ · ∂ ′
σ x′), (102)

evaluated at the field point. The first integral is a surface integral whose integrand diverges
no worse than 1/r ; the second is a boundary integral of a regular function (so long as the
field point is never situated on the boundary).

If, as suggested in Section III.C.3, theµth tangent vector at the field point (with surface
parameteru0) is given by

tµ(u) = ∂µx(u) (103)

and theνth vector testing function associated with scalar testing functionf (k)(u) is given
by

t(k)
ν (u) = ∂νx(u)√

g(u)
f (k)(u), (104)
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then Eq. (101) simplifies to∫
S

ds′ ∇′GR(x, x′) · (
∂µx∂ ′

ν f (k)(u) − ∂ ′
µx′∂ ′

ν f (k)(u0)
)/√

g(u)

+
∮

∂S
dl ′ ê′ · (

GR(x, x′)∂ ′
ν f (k)(u0)∂

′
µx′ + (

∂µx · ∇GR(x, x′)
)

f (k)(u)∂ ′
νx′)/√

g(u).

(105)

B. Divergence Theorem for Open Surfaces

Substitute

B = n̂ × A (106)

into Stokes’s theorem ∫
S

dsn̂ · (∇ × B) =
∮

∂S
dl · B (107)

to get ∫
S

ds n̂ · (∇ × (n̂ × A))

=
∫

S
ds n̂ · [n̂(∇ · A) − (n̂ · ∇)A − A(∇ · n̂) + (A · ∇)n̂] (108)

=
∫

S
ds[(∇‖ · A) − (n̂ · A)(∇ · n̂)] (109)

=
∮

∂S
dl · (n̂ × A) (110)

=
∮

∂S
(dl × n̂) · A (111)

=
∮

∂S
dl ê · A, (112)

where we have used the definition of tangential gradient

∇‖ ≡ ∇ − n̂(n̂ · ∇) (113)

and the following equation which relates the vector line elementdl and the surface normal
n̂ to the scalar line elementdl and the unit edge vectorê,

dl × n̂ = dl ê, (114)

and the observation that

n̂ · [(A · ∇)n̂] = [(A · ∇)n̂] · n̂ = 1

2
(A · ∇)(n̂ · n̂) = 0. (115)

In other words, the divergence theorem for open surfaces is∫
S

ds[(∇‖ · A) − (n̂ · A)(∇ · n̂)] =
∮

∂S
dl ê · A =

∮
∂S

(dl × n̂) · A, (116)
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which simplifies to ∫
S

ds(∇‖ · A) =
∮

∂S
dl ê · A =

∮
∂S

(dl × n̂) · A (117)

whenA is everywhere tangential toS.

C. Proof that∇′
‖ · [∂ ′

µx′/
√

g(u)] = 0

Note. Summation over repeated indices is implied:

∇′
‖ ·

[
∂ ′
µx′

√
g(u)

]
= ∂ ′ρ

(
∂ ′
µx′

√
g(u)

)
· ∂ ′

ρx′

= gρσ ∂ ′
σ

(
∂ ′
µx′

√
g(u)

)
· ∂ ′

ρx′

= gρσ

(
∂ ′
σ ∂ ′

µx′
√

g(u)
− ∂ ′

µx′

2
√

g(u)3
∂ ′
σ g(u)

)
· ∂ ′

ρx′

= gρσ

√
g(u)

(
∂ ′
σ ∂ ′

µx′ · ∂ ′
ρx′ − ∂ ′

µx′ · ∂ ′
ρx′

2g(u)

(
2g(u)gαβ∂ ′

αx′ · ∂ ′
σ ∂ ′

βx′))
= gρσ

√
g(u)

(
∂ ′
ρx′ · ∂ ′

σ ∂ ′
µx′ − gµρgαβ∂ ′

αx′ · ∂ ′
σ ∂ ′

βx′)
= 1√

g(u)

(
gρσ ∂ ′

ρx′ · ∂ ′
σ ∂ ′

µx′ − δσ
µgαβ∂ ′

αx′ · ∂ ′
σ ∂ ′

βx′)
= 1√

g(u)

(
gρσ ∂ ′

ρx′ · ∂ ′
σ ∂ ′

µx′ − gαβ∂ ′
αx′ · ∂ ′

µ∂ ′
βx′)

= 1√
g(u)

(
gρσ ∂ ′

ρx′ · ∂ ′
σ ∂ ′

µx′ − gρσ ∂ ′
ρx′ · ∂ ′

σ ∂ ′
µx′) = 0.
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